Skip to main content
Log in

Combined effects in nonlinear elliptic equations involving fractional operators

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In this paper, we use variational tools in order to study the existence and the multiplicity of solutions for a nonlinear elliptic problem involving fractional operators. Precisely, we use the Mountain pass theorem to prove the existence of a nontrivial solution. Also, by combining this with the Ekeland variational principle the existence of multiple solutions is proved. Moreover, the existence of infinitely many solutions is given by using the \(\mathbb {Z}2\)-symmetric version for even functionals of the Mountain pass Theorem. To illustrate the usefulness of the main results an illustrative example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519–543 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in R N. J. Differ. Equ. 255(8), 2340–2362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Autuori, G., Pucci, P.: Existence of entire solutions for a class of quasilinear elliptic equations. Nonlinear Differ. Equ. Appl. 20(3), 977–1009 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barles, G., Chasseigne, E., Imbert, C.: On the Dirichlet problem for second-order elliptic integrodifferential equations. Indiana Univ. Math. J. 57(1), 213–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis, H., Ciarlet, P. G., Lions, J. L.: Analyse fonctionnelle: théorie et applications, JL Lions - Dunod Paris, (1999)

  7. Cabre, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caff Aarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Capella, A.: Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains. Commun. Pure Appl. Anal. 10(6), 1645–1662 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47(2), 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. 1(3), 443–474 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, H., Kim, D.: On Lp-estimates for a class of non-local elliptic equations. J. Funct. Anal. 262(3), 1166–1199 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghanmi, A.: Existence of nonnegative solutions for a class of fractional p-Laplacian problems. Nonlinear Stud. 22(3), 373–379 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Ghoussoub, N., Preiss, D.: A general mountain pass principle for locating and classifying critical points. Ann. Inst. Henri poincare Anal. Non lineaire. 6(5), 321–330 (1989)

  16. Kavian, O.: Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Springer-Verlag, Paris, New York (1993)

    MATH  Google Scholar 

  17. di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saoudi, K., Ghanmi, A., Horrigue, S.: Multiplicity of solutions for elliptic equations involving fractional operator and sign-changing nonlinearity. J. Pseudo-Differ. Oper. Appl. 11(4), 1743–1756 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Servadei, R.: The Yamabe equation in a non-local setting. Adv. Nonlinear Anal. 2, 235–270 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389(2), 887–898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Continu discret. Dyn. Syst. S. 33(5), 2105–2137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rym Chammem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chammem, R., Ghanmi, A. & Mechergui, M. Combined effects in nonlinear elliptic equations involving fractional operators. J. Pseudo-Differ. Oper. Appl. 14, 35 (2023). https://doi.org/10.1007/s11868-023-00530-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11868-023-00530-w

Keywords

Mathematics Subject Classification

Navigation