Skip to main content
Log in

Valorization of aluminium slags to produce sustainable ceramic wall tiles

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The aim of this study is to recycle aluminum slag as a raw material for ceramic tile production. The non-metallic part of the slags, which are multi-component systems consisting of metal and non-metallic parts, was dissolved in water by washing. After three washes, the slag was calcined at 1200 °C for 4 h, and each stage of the slag was examined by X-ray analysis (XRD), scanning electron microscopy (SEM) to confirm the removal of harmful materials, and elemental analysis by energy-dispersive X-ray spectroscopy (EDX) has been made. The slag was added to the wall tiles at a ratio of 1, 3, 5, 7, 10, and 15 wt.%. While the green strength value of the standard wall tile was 1.20 N/mm2, this value increased to 3.06 N/mm2 with 10 wt.% slags. Also, the fired strength value increased from 10.66 to 27 N/ mm2 with the addition of 10 wt.%. Since slags in wall tiles cause a twofold increase in raw strength and fired strength values, aluminum slag can be easily used instead of strength-increasing mixtures in thin wall tiles. The sample strength increase is also supported by the porosity ratios calculated using SEM images. By using slags, a 30 °C reduction in sintering temperatures will also contribute to the reduction in CO2 emissions. After slags, the mechanical values provided standard wall tile values, and some lightening was observed in the tile colors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Logožar, K., Radonjič, G., Bastič, M.: Incorporation of reverse logistics model into in-plant recycling process: a case of aluminium industry. Resour. Conserv. Recycl. 49, 49–67 (2006). https://doi.org/10.1016/j.resconrec.2006.03.008

    Article  Google Scholar 

  2. Elinwa, A.U., Mbadike, E.: The use of aluminum slag for concrete production. J Asian Archit. Build. Eng. 10, 217–220 (2011). https://doi.org/10.3130/jaabe.10.217

    Article  Google Scholar 

  3. Nduka, D.O., Joshua, O., Ajao, A.M., Ogunbayo, B.F., Ogundipe, K.E.: Influence of secondary aluminum dross (SAD) on compressive strength and water absorption capacity properties of sandcrete block. Cogent Eng. 6, 1608687 (2019). https://doi.org/10.1080/23311916.2019.1608687

    Article  Google Scholar 

  4. Zuo, Z., Lv, H., Li, R., Liu, F., Zhao, H.: A new approach to recover the valuable elements in black aluminum dross. Resour. Conserv. Recycl. 174, 105768 (2021) https://www.sciencedirect.com/science/article/pii/S0921344921003773

    Article  CAS  Google Scholar 

  5. Recalde, K., Wang, J., Graedel, T.E.: Aluminium in-use stocks in the state of Connecticut. Resour. Conserv. Recycl. 52, 1271–1282 (2008). https://doi.org/10.1016/j.resconrec.2008.07.006

    Article  Google Scholar 

  6. Curtolo, D.C., Xiong, N., Friedrich, S., Friedrich, B.: High- and ultra-high-purity aluminum, a review on technical production methodologies. Metals. 11, (2021). https://doi.org/10.3390/met11091407

  7. Wallace, G.: Production of secondary aluminium. In: Lumley, B.R. (ed.) Fundamentals of aluminum metallurgy, pp. 70–82. Woodhead Publishing (2011)

    Chapter  Google Scholar 

  8. Yoshimura, H.N., Abreu, A.P., Molisani, A.L., de Camargo, A.C., Portela, J.C.S., Narita, N.E.: Evaluation of aluminum dross slag as raw material for refractories. Ceram. Int. 34, 581–591 (2008). https://doi.org/10.1016/j.ceramint.2006.12.007

    Article  CAS  Google Scholar 

  9. Zawrah, M.F., Wassel, A.R., Youness, R.A., Taha, M.A.: Recycling of aluminum dross and silica fume slags for production of mullite-containing ceramics: powder preparation, sinterability and properties. Ceram Int. 48, 31661–31671 (2022). https://doi.org/10.1016/j.ceramint.2022.07.087

    Article  CAS  Google Scholar 

  10. Huan, S., Wang, Y., Peng, J., Di, Y., Li, B., Zhang, L.: Recovery of aluminum from slag aluminum alloy by low-temperature molten salt electrolysis. Miner. Eng. 154, 106386 (2020). https://doi.org/10.1016/j.mineng.2020.106386

    Article  CAS  Google Scholar 

  11. Abyzov, V.A.: Refractory cellular concrete based on phosphate binder from slag of production and recycling of aluminum. Proc. Eng. 206, 783–789 (2017). https://doi.org/10.1016/j.proeng.2017.10.551

    Article  CAS  Google Scholar 

  12. Zhang, S., Ren, F., Ding, H., Qiu, J., Tian, Y., Liu, N.: Recycling aluminum dross as a mineral admixture in CaO-activated superfine slag. Constr BuildMater. 279, 122434 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122434

    Article  CAS  Google Scholar 

  13. Chargui, F., Hamidouche, M., Belhouchet, H., Jorand, Y., Doufnoune, R., Fantozzi, G.: Mullite fabrication from natural kaolin and aluminium slag. Bol. Soc. Esp. Cerám. V. 57, 169–177 (2018). https://doi.org/10.1016/j.bsecv.2018.01.001

    Article  CAS  Google Scholar 

  14. Ahmed, M.M., El-Naggar, K.A.M., Tarek, D., Ragab, A., Sameh, H., Zeyad, A.M., Tayeh, B.A., Maafa, I.M., Yousef, A.: Fabrication of thermal insulation geopolymer bricks using ferrosilicon slag and alumina slag. Case Stud. Constr. Mater. 15, e00737 (2021). https://doi.org/10.1016/j.cscm.2021.e00737

    Article  Google Scholar 

  15. Ren, C., Wang, W., Yao, Y., Wu, S., Qamar, X.Y.: Complementary use of industrial solid slags to produce green materials and their role in CO2 reduction. J. Clean. Prod. 252, 119840 (2020). https://doi.org/10.1016/j.jclepro.2019.119840

    Article  CAS  Google Scholar 

  16. Wu, S., Wang, W., Ren, C., Yao, X., Yao, Y., Zhang, Q., et al.: Calcination of calcium sulphoaluminate cement using flue gas desulfurization gypsum as whole calcium oxide source. Constr. Build. Mater. 228, 116676 (2019). https://www.sciencedirect.com/science/article/pii/S0950061819320926

    Article  CAS  Google Scholar 

  17. Sanchez Hernandez, R., López-Delgado, A., Padilla, I., Galindo Llorach, R., López-Andrés, S.: One-step synthesis of NaP1, SOD and ANA from a hazardous aluminum solid slag. Micropor. Mesopor. Mater. 1, 226 (2016)

    Google Scholar 

  18. Ewais, E.M.M., Khalil, N.M., Amin, M.S., Ahmed, Y.M.Z., Barakat, M.A.: Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement. Ceram. Int. 35, 3381–3388 (2009). https://doi.org/10.1016/j.ceramint.2009.06.008

    Article  CAS  Google Scholar 

  19. Zhao, Y., Qiu, J., Wu, P., Guo, Z., Zhang, S., Sun, X.: Preparing a binder for cemented paste backfill using low-aluminum slag and hazardous oil shale residue and the heavy metals immobilization effects. Powder Technol. 399, 117167 (2022). https://doi.org/10.1016/j.powtec.2022.117167

    Article  CAS  Google Scholar 

  20. Meshram, A., Singh, K.K.: Recovery of valuable products from hazardous aluminum dross: a review. Resour. Conserv. Recycl. 130, 95–108 (2018). https://doi.org/10.1016/j.resconrec.2017.11.026

    Article  Google Scholar 

  21. Bruckard, W.J., Walta, P., Woodcock, J.T.: The recovery of aluminium metal from primary and secondary aluminium drosses by wet grinding and screening. Light Metals TMS. 1203-1208, (2005)

  22. Das, B.R., Dash, B., Tripathy, B.C., Bhattacharya, I.N., Das, S.C.: Production of η-alumina from slag aluminium dross. Miner. Eng. 20, 252–258 (2007). https://doi.org/10.1016/j.mineng.2006.09.002

    Article  CAS  Google Scholar 

  23. Tsakiridis, P.E., Oustadakis, P., Agatzini-Leonardou, S.: Aluminium recovery during black dross hydrothermal treatment. J. Environ. Chem. Eng. 1, 23–32 (2013). https://doi.org/10.1016/j.jece.2013.03.004

    Article  CAS  Google Scholar 

  24. Jiménez, A., Misol, A., Morato, Á., Rives, V., Vicente, M.A., Gil, A.: Synthesis of pollucite and analcime zeolites by recovering aluminum from a saline slag. J. Clean. Prod. 297, 126667 (2021). https://doi.org/10.1016/j.jclepro.2021.126667

    Article  CAS  Google Scholar 

  25. Alonso-De la Garza, D.A., Guzmán, A.M., Gómez-Rodríguez, C., Martínez, D.I., Elizondo, N.: Influence of Al2O3 and SiO2 nanoparticles addition on the microstructure and mechano-physical properties of ceramic tiles. Ceram Int. 48(9), 12712–12720 (2022). https://doi.org/10.1016/j.ceramint.2022.01.140

    Article  CAS  Google Scholar 

  26. Deng, Z., et al.: Preparation of a hydroxyapatite–silver gradient bioactive ceramic coating with porous structure by laser cladding: a study of in vitro bioactivity. Ceram Int. 48(20), 30468–30481 (2022). https://doi.org/10.1016/j.ceramint.2022.06.327

    Article  CAS  Google Scholar 

  27. Paganelli, M.: Using the optical dilatometer to determine sintering behavior. Am. Ceram. Soc. Bul. 81, 25–30 (2002)

    CAS  Google Scholar 

  28. Gajek, M., Rapacz-Kmita, A., Stodolak-Zych, E., Zarzecka-Napierała, M., Wilk, M., Magdziarz, A., Dudek, M.: Microstructure and mechanical properties of diopside and anorthite glazes with high abrasion resistance. Ceram. Int. 48, 6792–6798 (2021). https://doi.org/10.1016/j.ceramint.2021.11.230

    Article  CAS  Google Scholar 

  29. Ren, C., Hua, D., Bai, Y., Wu, S., Yao, Y., Wang, W.: Preparation and 3D printing building application of sulfoaluminate cementitious material using industrial solid slag. J. Clean. Prod. 363, 132597 (2022). https://doi.org/10.1016/j.jclepro.2022.132597

    Article  CAS  Google Scholar 

  30. Hocking, M.B.: Ammonia, nitric acid and their derivatives. In: Hocking, M.B. (ed.) Modern chemical technology and emission control, pp. 205–233. Springer (1985)

    Chapter  Google Scholar 

  31. Osoba, L.O., Biodun, O.O., Talabi, S.I., Adeosun, S.O.: Review on oxide formation and aluminum recovery mechanism during secondary smelting. Mater. Eng. 2(2), 45–51 (2018). https://doi.org/10.7494/jcme.2018.2.2.45

    Article  Google Scholar 

  32. Raigón-Pichardo, M., García-Ramos, G., Sánchez-Soto, P.J.: Characterization of a slag washing solid product of mining granitic tin-bearing sands and its application as ceramic raw material. Resour. Conserv. Recycl. 17, 109–124 (1996). https://doi.org/10.1016/0921-3449(96)01108-1

    Article  Google Scholar 

  33. Kumar, V., Garg, N.: The chemical and physical origin of incineration ash reactivity in cementitious systems. Resour. Conserv. Recycl. 177, 106009 (2022). https://doi.org/10.1016/j.resconrec.2021.106009

    Article  CAS  Google Scholar 

  34. Xu, L., Zhang, D., Liu, Y., Chen, M., Wang, N.: Comparison of microstructure, thermo-mechanical property and corrosion resistance of bauxite-corundum refractory castables reinforced by two approaches. Ceram. Int. 47, 13660–13668 (2021). https://doi.org/10.1016/j.ceramint.2021.01.227

    Article  CAS  Google Scholar 

  35. Schultze, D.S., Wirth, R., Wunder, B., Loges, A., Wilke, M., Franz, G.: Corundum-quartz metastability: the influence of a nanometer-sized phase on mineral equilibria in the system Al2O3–SiO2–H2O. Contrib. Mineral. Petrol. 176, 27 (2021). https://doi.org/10.1007/s00410-021-01786-5

    Article  CAS  Google Scholar 

  36. Cely Illera, L., Cely Niño, J., Cely Illera, C.V.: Effects of corundum in the development of structural, mechanical and tribological properties of raw materials for the manufacture of structural products. Associação Brasileira. 64, 352–358 (2018). https://doi.org/10.1590/0366-69132018643712327

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was awarded the third prize in the “Be a Part of Recycling” project competition organized by the Turkish Aluminum Industrialists’ Association (TALSAD). The authors thank all members of the organizing committee for this competition. In addition, we would like to thank VIG Metal A.Ş (Turkey) from which we supplied the aluminium slag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neslihan Basaran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamsu Selli, N., Basaran, N. Valorization of aluminium slags to produce sustainable ceramic wall tiles. J Aust Ceram Soc 59, 1249–1261 (2023). https://doi.org/10.1007/s41779-023-00905-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00905-8

Keywords

Navigation