Skip to main content

Ammonia, Nitric Acid and their Derivatives

  • Chapter
Modern Chemical Technology and Emission Control

Abstract

Early samples of ammonia were obtained by such means as the bacterial action on the urea present in urine (Equation 9.1), or by the dry distillation

$$ H2N - CO - N{H_2} + {H_2}O\xrightarrow{{bacteria}}\,C{O_2} + 2N{H_3} $$
((9.1))

of protein-containing substances such as bone, horns, and hides. Small amounts were also obtained from the manufacture of coke or coal gas from coals. Ammonia is still recovered at the rate of 134,000 tonnes per year as an incidental part of U.S. coal-based operations [1,2], but this amounts to less than 1% of current U.S. ammonia production (Table 9.1). By far the bulk of ammonia produced today is by the direct combination of the elements. Other synthetic processes have been tested and found to be either impractical for commercial exploitation, or have gradually been supplanted by direct elemental combination for economic reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Relevant Bibliography

  1. K.V. Reddy and A. Husain, Vapour-Liquid Equilibrium Relationship for Ammonia in Presence of Other Gases, Ind. Eng. Chem. Process Res. Dev. 19, 580 (1980)

    Article  CAS  Google Scholar 

  2. R.M. Harrison and H.A. McCartney, Some Measurements of Ambient Air Pollution Arising from the Manufacture of Nitric Acid and Ammonium Nitrate Fertilizer, Atmos. Envir. 13, 1, 105 (1979)

    Article  Google Scholar 

  3. Ammonia, Subcommittee on Ammonia, Committee on Medical and Biologic Effects of Environmental Pollutants, National Research Council, University Park Press, Baltimore, 1979

    Google Scholar 

  4. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edition, John Wiley and Sons, New York, 1978

    Google Scholar 

  5. T.H. Chilton, Strong Water; Nitric Acid: Sources, Methods of Manufacture, and Uses, MIT Press, Cambridge, Mass. 1968

    Google Scholar 

  6. R.N. Shreve, Chemical Process Industries, McGraw-Hill, New York, 1945

    Google Scholar 

  7. J.W. Dobereiner, Ann. Chim. 24:2(2), 91 (1823). Cited by reference 6

    Google Scholar 

  8. Kirk-Othmer Encyclopedia of Chemical Technology, 2nd edition, Interscience, New York, 1968. Volume 2, page 268

    Google Scholar 

  9. V. Sauchelli, Fertilizer Nitrogen: Its Chemistry and Technology, American Chemical Society Monograph no. 161, Reinhold, New York, 1964

    Google Scholar 

  10. F.S. Taylor, A History of Industrial Chemistry, Reprint Edition, Arno Press, New York, 1972

    Google Scholar 

  11. B. Timm, Chem. Ind. (London), 274, March 12, 1960

    Google Scholar 

  12. Encyclopedia of Chemical Technology, R.E. Kirk and D.F. Othmer, editors, Interscience, New York, 1941

    Google Scholar 

  13. C. Matasa and E. Tonca, Basic Nitrogen Compounds, Chemistry, Technology, Applications, Chemical Publishing Co., New York, 1973

    Google Scholar 

  14. F. Haber, J. Ind. Eng. Chem. 6, 325, April 1914

    CAS  Google Scholar 

  15. J.A. Almquist and E.D. Crittenden, Ind. Eng. Chem. 18, 1, 307, Dec. 1926

    Article  Google Scholar 

  16. H. Hinrichs, Brit. Chem. Eng. 12(11), 1, 745, Nov. 1867

    Google Scholar 

  17. P.H. Emmett and J.T. Kummer, Ind. Eng. Chem. 3. 5, 677 (1943)

    Google Scholar 

  18. R.A. King, Nitrogen (London) No. 35, 22, May 1965

    Google Scholar 

  19. Methane Reforming to Stay, Chem. Eng. News 59 (35), 39, Aug. 31, 1981

    Google Scholar 

  20. F.A. Lowenheim and M.K. Mofan, Faith, Keyes and Clark’s Industrial Chemicals, 4th Edition, Wiley Interscience, New York, 1975

    Google Scholar 

  21. A.H. Trotter, U.S. Patent 1,852,763, April 5, 1932 to Atmospheric Nitrogen Corp. Chem. Abstr. 26, 3, 077 (1932)

    Google Scholar 

  22. R. Wood, Proc. Eng., 7, Sept. 1976

    Google Scholar 

  23. J.A. Finneran, L.J. Buividas and N. Walen, Hydroc. Proc. 51 (4), 127, April 1972

    CAS  Google Scholar 

  24. R.N. Shreve and J.A. Brink, Jr., Chemical Process Industries, 4th Edition, McGraw-Hill, New York, 1977

    Google Scholar 

  25. J.S. Vanick, Proc. Am. Soc. Testing Materials 24(2), 348. (1924). Chem. Abstr. 19, 1, 395 (1925)

    Google Scholar 

  26. J.S. Vanick, Trans. Am. Soc. Steel Treating, 4, 62 (1923), Chem. Abstr. 17, 3, 313 (1923)

    Google Scholar 

  27. K.E. Weale, Chemical Reactions at High Pressures, Spon, London, 1967, page 100

    Google Scholar 

  28. M.R. Louthan, Jr., Proc. Ind. Corrosion, 126 (1975)

    Google Scholar 

  29. M.R. Louthan, Jr., G.R. Caskey, Jr., J.A. Donovan, and D.E. Rawl, Jr., Mater. Sci. Eng. 10, 357 (1972)

    Article  CAS  Google Scholar 

  30. C.F. Britton, Chem. in Brit. 17(3), 108, March 1981

    Google Scholar 

  31. System Monitors Hydrogen, Can. Chem. Proc. 65(2), 53, March 27, 1981

    Google Scholar 

  32. M.D. Wynne, Chemical Processing in Industry, Royal Instit. Chem. Monograph No. 16, London, 1970, page 5

    Google Scholar 

  33. Argon Recovery Plant, Chem. Eng. News, 58(4), 32, Jan. 28, 1980

    Google Scholar 

  34. W.J. Storck, Chem. Eng. News, 56(34), 11, Aug., 21, 1978

    Google Scholar 

  35. Methane Reforming to Stay, Chem. Eng. News 59(35), 39; Aug. 31, 1981

    Google Scholar 

  36. Gas Efficiency Key to Fertilizer, Can. Chem. Proc. 64 (7), 4, July 1980

    Google Scholar 

  37. Ammonia Plants More Efficient, Can. Chem. Proc. 64 (10), 10, Oct. 1980

    Google Scholar 

  38. F. Forster, Chem. Eng. 87, 62, Sept. 8, 1980

    Google Scholar 

  39. T.A. Ring, W.L. Mann, Y.S. Tse, Chem. Eng. Prog. 66 (12), 59, Dec. 1970

    Google Scholar 

  40. M. Lauzon, Can. Chem. Proc. 65 (3), 42, May 1981

    Google Scholar 

  41. L.C. Daigre, III and G.R. Nieman, Chem. Eng. Prog. 70 (2), 50, Feb. 1974

    Google Scholar 

  42. G.P. Williams and J.G. Sawyer, Chem. Eng. Prog. 70 (2), 45, Feb. 1974

    Google Scholar 

  43. T. Wett, Oil and Gas J. 70(19), May 8, 1972

    Google Scholar 

  44. J.G. Sawyer, G.P. Williams, Chem. Eng. Prog. 70 (2), 62, Feb. 1974

    Google Scholar 

  45. Ammonia Process, Chem. Eng. News 56(48), 19, Nov. 27, 1978

    Google Scholar 

  46. Ammonia Unit, Chem. Eng. News 58 (33), 24, Aug. 18, 1980

    Google Scholar 

  47. R.F. Giles and L.D. Gains, Instr. Techn. 24, 41, Oct. 1977

    CAS  Google Scholar 

  48. R. Banks, Chem. Eng. 84D, 89, Oct. 10, 1977

    Google Scholar 

  49. Monsanto Sells Hydrogen-Recovery, Chem. Eng. News 58(18), 8. May 5, 1980

    Google Scholar 

  50. Japanese Technologists, Can. Chem. Proc. 59 (5), 8, May 1975

    Google Scholar 

  51. A.V. da Rosa, Chemtech 8, 28, Jan. 1978

    Google Scholar 

  52. S. Strelzoff, Hydroc. Proc. 53 (10), 133, Oct. 1974

    CAS  Google Scholar 

  53. D. Netzer and J. Moe, Chem. Eng. 84D, 129, Oct. 24, 1977

    Google Scholar 

  54. F. Brown, Hydroc. Proc. 56 (11), 361, Nov. 1977

    CAS  Google Scholar 

  55. TV A Ammonia-from-coal Project, Chem. Eng. News 57(33), 27, June 4, 1979

    Google Scholar 

  56. D.E. Nichols and P.C. Williamson, 2nd Chem. Congress of N. Amer. Continent, Las Vegas, Aug. 24–29, 1980. Abstr. FERT-14

    Google Scholar 

  57. L.J. Buividas, Chem. Eng. Prog. 77, 44, May 1981

    CAS  Google Scholar 

  58. D. Nichols and G.M. Blouin, Chemtech 9, 512, Aug. 1979

    CAS  Google Scholar 

  59. Desert Sand Catalyze Ammonia Formation, Chem. Eng. News 56(46), 7, Nov. 13, 1978

    Google Scholar 

  60. Prototype Solar Cell, Chem. Eng. News 55(49), 19, Oct. 3, 1977

    Google Scholar 

  61. W.L. Faith, D.B. Keyes, and R.L. Clark, Industrial Chemicals, 3rd edition, John Wiley, Toronto, 1965, page 77

    Google Scholar 

  62. Guidelines for the Location of Stationary Bulk Ammonia Storage Facilities, Standards and Approvals Division, Alberta Dept. of the Environment, Edmonton, November 1981, 9 pp

    Google Scholar 

  63. Guidelines foi; Limiting Contaminant Emissions to the Atmosphere from Fertilizer Plants and Related Industries in Alberta, Standards and Approvals Division, Alberta Dept. of the Environment, Edmonton, February 1976, 23 pp

    Google Scholar 

  64. Ammonia Plant Waste, Chem. Eng. News 58(36), 51, Sept. 8, 1980

    Google Scholar 

  65. Industrial Pollution Control Handbook, H.F. Lund, Editor, McGraw-Hill, Toronto, 1971

    Google Scholar 

  66. T. Dear, Chem. Eng. Prog. 70 (2), 65, Feb. 1974

    Google Scholar 

  67. C.F. Kuhlmann, Liebigs Annalen der Chem. 29, 212 (Ì839), and reference cited therein

    Google Scholar 

  68. W. Ostwald, U.S. Patent 858, 904, July 2, 1907, cited by T.H. Chilton, reference 3

    Google Scholar 

  69. The Modern Inorganic Chemicals Industry, R. Thompson, editor, The Chemical Society, London, 1977, page 221

    Google Scholar 

  70. F.A. Cotton and G. Wilkinson, Advanced In-organic Chemistry A Comprehensive Text, 3rd Edition, Interscience, 1972, page 357

    Google Scholar 

  71. R.M. Stephenson, Introduction to the Chemical Process Industries, Reinhold, New York, 1966, page 136

    Google Scholar 

  72. M. Bodenstein, Zeits. Electrochem. 34, 183 (1918)

    Google Scholar 

  73. Key Chemicals Nitric Acid, Chem. Eng. News 54(28), 14, July 5, 1976

    Google Scholar 

  74. M.C. Manderson, Chem. Eng. Prog. 68 (4), 57, April 1972

    Google Scholar 

  75. Maggie Concentrates Nitric, Chem. Eng. News 36B, 40, June 9, 1958

    Google Scholar 

  76. D.J. Newman and L.A. Klein, Chem. Eng. Prog. 68 (4), 62, April 1972

    CAS  Google Scholar 

  77. New Generation of Nitric Acid Plants, Chem. Eng. News 54 (52), 33, Dec. 20, 1976

    Google Scholar 

  78. L. Hellmer, Chem. Eng. Prog. 68 (4), 67, April 1972

    CAS  Google Scholar 

  79. CIL Plant Uses New HN03 Process, Chem. In Can. 29(8), 13, Sept. 1977

    Google Scholar 

  80. A New Support System, Chem. Week 109(4), 39, July 28, 1971

    Google Scholar 

  81. Technology Newsletter, Chem. Week 108 (13), April 1, 1970

    Google Scholar 

  82. L.M. Marzo and J.M. Marzo, Chem. Eng. 87, 54, Nov. 3, 1980

    Google Scholar 

  83. Industrial Hygiene and Toxicology, 2nd edition, F.A. Patty, editor, Interscience, New York, 1963, Volume n, Toxicology, page 918

    Google Scholar 

  84. R.M. Reed and R.L. Harvin, Chem. Eng. Prog. 68 (4), 78, April 1972

    CAS  Google Scholar 

  85. G.R. Gillespie, A.A. Boyum, and M.F. Collins, Chem. Eng. Prog. 68 (4), 72, April, 1972

    CAS  Google Scholar 

  86. W. Frietag and M.W. Packbier, Ammonia Plant Safety 20, 11, 1978

    Google Scholar 

  87. M. Yamaguchi, K. Matsushita, and K. Takami, Hydroc. Proc. 55, 101, Aug. 1976

    CAS  Google Scholar 

  88. C.G. Swanson, Jr., J.V. Prusa, T.M. Hellman, and D. E. Elliott, Pollution Eng., 10 (10), 52, Oct. 1978

    CAS  Google Scholar 

  89. New Units For NOx, Can. Chem. Proc. 59 (12), 26, Dec. 1975

    Google Scholar 

  90. Two Processes to Control, Can. Chem. Proc. 59 (11), 4, Nov. 1975

    Google Scholar 

  91. W. Joithe, A.T. Bell and S. Lynn, Ind. Eng. Chem. Process Res. Develop. 11 (3), 434, 1972

    Article  CAS  Google Scholar 

  92. Chemical Marketing Reporter 219(24), 41, June 15, 1981

    Google Scholar 

  93. I. Dunstan, Chem. In Brit. 7(2), 62, Feb. 1971

    Google Scholar 

  94. W.J. Storck, Chem. Eng. News 57(39), 11, Sept. 24, 1979

    Google Scholar 

  95. C. Boyars, Ind. Eng. Chem., Prod. Res. Dev. 15 (4), 308, 1976

    Article  CAS  Google Scholar 

  96. Nitrate Causes Explosion, Science News Letter 118, Aug. 22, 1959

    Google Scholar 

  97. Ammonium Nitrate, Hydroc. Proc. 58 (11), 135, Nov. 1979

    Google Scholar 

  98. High Demand For Ammonium Nitrate, Can. Chem. Proc. 61 (7), 8, July 1977

    Google Scholar 

  99. Product Profile Urea, Can. Chem. Proc. 61 (10), 50, Oct. 1977

    Google Scholar 

  100. V. Lagana and G. Schmid, Hydroc. Proc. 54 (7), 102, July 1975

    CAS  Google Scholar 

  101. E. Otsuka, S. Inove and T. Jojima, Hydroc. Proc. 55 (11), 160, Nov. 1976

    CAS  Google Scholar 

  102. E.R. Hoffman and R.K. Fidler, Hydroc. Proc. 55 (8), 111, Aug. 1976

    CAS  Google Scholar 

  103. T. Jojima and T. Sato, Chem. Age (India) 26, 524 (1975). Cited by Reference 1

    Google Scholar 

  104. Dow Feed-Grade Buiret, Chem. Eng. News 49(25), 23, June 21, 1871

    Google Scholar 

  105. A New Liquid Cattle Feed Supplement, Can. Chem. Proc. 56 (10), 4, Oct. 1972

    Google Scholar 

  106. W.J. Storck, Chem. Eng. News 59(18), 35, May 4, 1981

    Google Scholar 

  107. Z.I. Sabry, Chem. In Can. 27(2), 16, Feb. 1975

    Google Scholar 

  108. C.J. Pratt, Scient. Am. 212 (6), 62, June 1965

    Article  Google Scholar 

  109. Sulphur Response, Chem. In Can. 24 (7), 5, summer 1972

    Google Scholar 

  110. R.J.P. Williams, Chem. in Brit. 15(10), 506, Oct. 1979

    Google Scholar 

  111. New Bacteria Fix N2, Chem. Eng. News 56(27), 5, July 3, 1978

    Google Scholar 

  112. Nitrogen Fixation Research Advances, Chem. Eng. News 58(49), 29, Dec. 8, 1980

    Google Scholar 

  113. Bacteria Could Fertilize Soil, Can. Chem. Proc. 61 (10), 6, Oct. 1977

    Google Scholar 

  114. New Bacteria Reduce Fertilizer Need, Chem. Eng. News 55(36), 18, Sept. 5, 1977

    Google Scholar 

  115. H.P. Rotbaum, Outlook on Agrie. 5, 123, 1966

    Google Scholar 

  116. H.P. Rotbaum and W. Kitt, N.Z.J. Science 7, 67, 1964

    Google Scholar 

  117. K. Karbe, The Chem. Eng. 221, 268, Sept. 1968

    Google Scholar 

  118. N.L. Nemerow, Industrial Water Pollution, Origins, Characteristics, and Treatment, Addison- Wesley, Don Mills, Ontario, 1978, page 613

    Google Scholar 

  119. Nitrogen Fertilizers May Endanger Ozone, Chem. Eng. News 53 (41), 6, Nov. 24, 1975

    Google Scholar 

  120. Fertilizer May Deplete Ozone Layer, Chem. Eng. News 56(40), 6, Oct. 2, 1978

    Google Scholar 

  121. F. Haber, S. Tamara and C. Ponnaz, Z. Electrochem. 21, 89, 128, and 191, 1915, and refs. cited therein.

    Google Scholar 

  122. A.T. Larson, J. Am. Chem. Soc. 46, 367, 1924, and earlier refs.

    Article  CAS  Google Scholar 

  123. A. Nielson, An Investigation on Promoted Iron Catalyst for the Synthesis of Ammonia, 3rd edition, J. Gjellerups Forlag, Denmark 1968. Cited by reference 2

    Google Scholar 

  124. Handbook of Chemistry, 10th edition, N.A. Lange, editor McGraw-Hill, Toronto, 1969, page 915

    Google Scholar 

  125. Chem. Eng. News 59(18), 35, May 4, 1981

    Google Scholar 

  126. Verband der Chemischen Industrie

    Google Scholar 

  127. Statistics Canada, Catalog 46-002,,Supply and Services Canada Ottawa, 1982

    Google Scholar 

  128. Annual Fertilizer Review, Food and Agricultural Organization, United Nations, Rome, 1975

    Google Scholar 

  129. Japan Economic Yearbook 1981/82, The Oriental Economist, Tokyo, 1981, page 69, and earlier issues

    Google Scholar 

  130. Can. Chem. Proc. 54 (9), 55, Sept. 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag, Berlin, Heidelberg

About this chapter

Cite this chapter

Hocking, M.B. (1985). Ammonia, Nitric Acid and their Derivatives. In: Modern Chemical Technology and Emission Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69773-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69773-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69775-3

  • Online ISBN: 978-3-642-69773-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics