Skip to main content
Log in

Deep eutectic solvent based on choline chloride and phenol as electrolyte additives in dye-sensitized solar cells: a comparison with 4-tert-butylpyridine

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The electrolyte additives are used in dye-sensitized solar cells to improve the photovoltaic performance of the devices, but they still remain their problems on the long-term stability of the solar cells and chemical safety. We have studied the use of two deep eutectic compounds based on choline chloride and phenol with two ratios of 1:2 and 1:3 as alternative electrolyte additives. These compounds own their advantages as eco-friendly chemicals, low cost, and simple synthesis process even at a large amount production. The two compounds, in comparison with the popular additive 4-tert-butylpyridine (4-TBP), were implemented in the functional devices which were characterized by current–voltage measurement and electrochemical impedance spectroscopy. Results showed that the two new additives could improve open circuit voltage values about 10–40 mV, whereas about 100 mV for 4-TBP, compared to the case without additives. Furthermore, using these new additives could result in a higher the short circuit current (Jsc) which was not observed with 4-TBP. These phenomena were explained by the shielding effects and charge transfer processes at the interfaces of electrodes and electrolyte. This study helped to design new efficient and eco-friendly additives for dye-sensitized solar cells in future scale-up production and commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O’regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. Nature. 353, 737–740 (1991)

    Article  Google Scholar 

  2. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  CAS  Google Scholar 

  3. Peter, L.M.: The gratzel cell: where next? J. Phys. Chem. Lett. 2, 1861–1867 (2011)

    Article  CAS  Google Scholar 

  4. Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., et al.: Conversion of light to electricity by cis-X2bis (2, 2’-bipyridyl-4, 4’-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)

    Article  CAS  Google Scholar 

  5. Boschloo, G., Häggman, L., Hagfeldt, A.: Quantification of the Effect of 4-tert-butylpyridine addition to I-/I 3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. J. Phys. Chem. B. 110, 13144–13150 (2006)

    Article  CAS  Google Scholar 

  6. Kusama, H., Konishi, Y., Sugihara, H., Arakawa, H.: Influence of alkylpyridine additives in electrolyte solution on the performance of dye-sensitized solar cell. Sol. Energy Mater. Sol. Cells. 80, 167–179 (2003)

    Article  CAS  Google Scholar 

  7. Phan, T.A.P., Nguyen, N.P., Nguyen, L.T., Nguyen, P.H., Le, T.K., Van, H.T., et al.: Direct experimental evidence for the adsorption of 4-tert-butylpyridine and 2,2′-bipyridine on TiO2 surface and their influence on dye-sensitized solar cells’ performance. Appl. Surf. Sci. 509, 144878 (2020)

    Article  CAS  Google Scholar 

  8. Kusama, H., Orita, H., Sugihara, H.: DFT investigation of the TiO2 band shift by nitrogen-containing heterocycle adsorption and implications on dye-sensitized solar cell performance. Sol. Energy Mater. Sol. Cells. 92, 84–87 (2008)

    Article  CAS  Google Scholar 

  9. Zhang, C., Dai, J., Huo, Z., Pan, X., Hu, L., Kong, F., et al.: Influence of 1-methylbenzimidazole interactions with Li+ and TiO2 on the performance of dye-sensitized solar cells. Electrochim. Acta 53, 5503–5508 (2008)

    Article  CAS  Google Scholar 

  10. Nguyen, P.T., Degn, R., Nguyen, H.T., Lund, T.: Thiocyanate ligand substitution kinetics of the solar cell dye Z-907 by 3-methoxypropionitrile and 4-tert-butylpyridine at elevated temperatures. Sol. Energy Mater. Sol. Cells. 93, 1939–1945 (2009)

    Article  CAS  Google Scholar 

  11. Tuyet Nguyen, P., Rand Andersen, A., Morten Skou, E., Lund, T.: Dye stability and performances of dye-sensitized solar cells with different nitrogen additives at elevated temperatures—can sterically hindered pyridines prevent dye degradation? Sol. Energy Mater. Sol. Cells. 94, 1582–1590 (2010)

    Article  CAS  Google Scholar 

  12. Nguyen, P.T., Lam, B.X.T., Andersen, A.R., Hansen, P.E., Lund, T.: Photovoltaic performance and characteristics of dye-sensitized solar cells prepared with the n719 thermal degradation products [Ru(LH)2(NCS)(4- tert-butylpyridine)][N(Bu)4] and [Ru(LH)2(NCS)(1- methylbenzimidazole)][N(Bu)4]. Eur. J. Inorg. Chem. 2, 2533–2539 (2011)

    Article  Google Scholar 

  13. Lund, T., Nguyen, P.T., Tran, H.M., Pechy, P., Zakeeruddin, S.M., Grätzel, M.: Thermal stability of the DSC ruthenium dye C106 in robust electrolytes. Sol. Energy 110, 96–104 (2014)

    Article  CAS  Google Scholar 

  14. Fabregat-Santiago, F., Bisquert, J., Palomares, E., Otero, L., Kuang, D., Zakeeruddin, S.M., et al.: Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. J. Phys. Chem. C 111, 6550–6560 (2007)

    Article  CAS  Google Scholar 

  15. Jhong, H.R., Wong, D.S.H., Wan, C.C., Wang, Y.Y., Wei, T.C.: A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem. Commun. 11, 209–211 (2009)

    Article  CAS  Google Scholar 

  16. Boldrini, C.L., Manfredi, N., Perna, F.M., Trifiletti, V., Capriati, V., Abbotto, A.: Dye-sensitized solar cells that use an aqueous choline chloride-based deep eutectic solvent as effective electrolyte solution. Energy Technol. 5, 345–353 (2017)

    Article  CAS  Google Scholar 

  17. Nguyen, P.T., Nguyen, T.-D.T., Nguyen, V.S., Dang, D.T.-X., Le, H.M., Wei, T.-C., et al.: Application of deep eutectic solvent from phenol and choline chloride in electrolyte to improve stability performance in dye-sensitized solar cells. J. Mol. Liq. 277, 157–62 (2019)

    Article  CAS  Google Scholar 

  18. Abbott, A.P., Barron, J.C., Ryder, K.S., Wilson, D.: Eutectic-based ionic liquids with metal-containing anions and cations. Chem. Eur. J. 13, 6495–6501 (2007)

    Article  CAS  Google Scholar 

  19. Smith, E.L., Abbott, A.P., Ryder, K.S.: Deep eutectic solvents (DESs) and their applications. Chem. Rev. 114, 11060–11082 (2014)

    Article  CAS  Google Scholar 

  20. Vitale, P., Abbinante, V.M., Perna, F.M., Salomone, A., Cardellicchio, C., Capriati, V.: Unveiling the hidden performance of whole cells in the asymmetric bioreduction of aryl-containing ketones in aqueous deep eutectic solvents. Adv. Synth. Catal. 359, 1049–1057 (2017)

    Article  CAS  Google Scholar 

  21. Wikene, K.O., Rukke, H.V., Bruzell, E., Tønnesen, H.H.: Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy. J. Photochem. Photobiol. B. Biol. 171, 27–33 (2017)

    Article  CAS  Google Scholar 

  22. Vidal, C., Merz, L., García-Álvarez, J.: Deep eutectic solvents: biorenewable reaction media for Au (I)-catalysed cycloisomerisations and one-pot tandem cycloisomerisation/Diels–Alder reactions. Green Chem. 17, 3870–3878 (2015)

    Article  CAS  Google Scholar 

  23. Zhang, W.-H., Chen, M.-N., Hao, Y., Jiang, X., Zhou, X.-L., Zhang, Z.-H.: Choline chloride and lactic acid: a natural deep eutectic solvent for one-pot rapid construction of spiro [indoline-3, 4′-pyrazolo [3, 4-b] pyridines]. J. Mol. Liq. 278, 124–129 (2019)

    Article  CAS  Google Scholar 

  24. Zounr, R.A., Tuzen, M., Deligonul, N., Khuhawar, M.Y.: A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry. Food Chem. 253, 277–283 (2018)

    Article  CAS  Google Scholar 

  25. Carriazo, D., Serrano, M.C., Gutiérrez, M.C., Ferrer, M.L., del Monte, F.: Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 41, 4996 (2012)

    Article  CAS  Google Scholar 

  26. Nguyen, T.-D.T., Nguyen, P.T., Tran, P.H.: Dye-sensitized solar cells using deep eutectic solvents mixed with ethanol as an effective electrolyte medium. Sci. Technol. Dev. J. 21, 15–23 (2018)

    Article  Google Scholar 

  27. Nguyen, D., Van Huynh, T., Nguyen, V.S., Doan Cao, P.-L., Nguyen, H.T., Wei, T.-C., et al.: Choline chloride-based deep eutectic solvents as effective electrolytes for dye-sensitized solar cells. RSC Adv. 11, 21560–21566 (2021)

    Article  CAS  Google Scholar 

  28. Fabregat-Santiago, F., Bisquert, J., Garcia-Belmonte, G., Boschloo, G., Hagfeldt, A.: Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol. Energy Mater. Sol. Cells. 87, 117–131 (2005)

    Article  CAS  Google Scholar 

  29. Schlichthörl, G., Huang, S.Y., Sprague, J., Frank, A.J.: Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B. 101, 8141–8155 (1997)

    Article  Google Scholar 

  30. Adachi, M., Sakamoto, M., Jiu, J., Ogata, Y., Isoda, S.: Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B. 110, 13872–13880 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

This research is funded by University of Science, VNU-HCM, under grant number HH 2021–09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuong Tuyet Nguyen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D., Nguyen, M.T., Nguyen, T.T.D. et al. Deep eutectic solvent based on choline chloride and phenol as electrolyte additives in dye-sensitized solar cells: a comparison with 4-tert-butylpyridine. J Aust Ceram Soc 58, 913–921 (2022). https://doi.org/10.1007/s41779-022-00745-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00745-y

Keywords

Navigation