Skip to main content
Log in

The ion irradiation tolerance of the fluorite RE2MO5 (RE = Sm, and Yb, M = Ti, Zr, and Sn) system

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In the search for novel ceramics for use within nuclear fuel–related applications and nuclear waste-form matrices, a major focus has been on the development of radiation-tolerant materials. Of particular interest in this field have been numerous compounds with either pyrochlore or the related fluorite-type structures. In this study, we look to expand the family of compounds with defect fluorite–type structure. We have fabricated three new compounds; Yb2Sn1.125O5.25, Yb2Sn1.25O5.5, and Yb2Sn1.375O5.75. The compound Yb2Sn1.125O5.25 was determined, via x-ray diffraction, to have the long-range defect fluorite structure, Fm-3 m symmetry, with cell parameter a = 5.17233(1). Further to this, Sm2ZrO5 and Yb2TiO5 compounds were also fabricated and crystal structures characterised. The use of transmission electron microscopy has revealed a much more complex crystal structure than that of the relatively high symmetry fluorite, with the presence of structural modulations being detected. The ion-irradiation response of these compounds was tested via bulk specimen irradiation using 15-MeV gold ions with grazing incidence x-ray diffraction characterisation. The results show that both Sm2ZrO5 and Yb2Sn1.25O5.5 are highly tolerant to ion-irradiation exposure whilst Yb2TiO5 is susceptible to amorphisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uberuaga, B.P., et al.: Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores. Nat. Commun. 6(1), 8750 (2015)

    Article  CAS  Google Scholar 

  2. Lumpkin, G.R., et al.: Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds. J. Solid State Chem. 180(4), 1512–1518 (2007)

    Article  CAS  Google Scholar 

  3. Sickafus, K.E., et al.: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6(3), 217–223 (2007)

    Article  CAS  Google Scholar 

  4. Van Dijk, M., K. De Vries, A.J.S.S.I: Burggraaf, Oxygen ion and mixed conductivity in compounds with the fluorite and pyrochlore structure. 9: 913–919 (1983)

  5. Lian, J., et al: Nanoscale manipulation of pyrochlore: new nanocomposite ionic conductors. 87(14), 145901 (2001)

  6. Subramanian, M., G. Aravamudan, G.S.J.P.i.S.S.C. Rao: Oxide pyrochlores—a review. 15(2), 55–143 (1983)

  7. Andrievskaya, E.: Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with rare-earth oxides. J. Eur. Ceram. Soc. 28(12), 2363–2388 (2008)

    Article  CAS  Google Scholar 

  8. Aughterson, R. D., G.R.L., Zhang, Z., Avdeev, M., Kong, L: Crystal chemistry and ion-irradiation resistance of Ln2ZrO5 compounds with Ln = Sm, Eu, Gd and Tb. Manuscript submitted for publication (2021)

  9. Risovany, V., Varlashova, E., Suslov, D.: Dysprosium titanate as an absorber material for control rods. J. Nucl. Mater. 281(1), 84–89 (2000)

    Article  CAS  Google Scholar 

  10. Aughterson, R.D., N.J. Zaluzec, G.R. Lumpkin, Synthesis and ion-irradiation tolerance of the Dy2TiO5 polymorphs. Acta Materialia, 204, 116518 (2021)

  11. Aughterson, R.D., et al.: The influence of crystal structure on ion-irradiation tolerance in the Sm(x)Yb(2–x)TiO5 series. J. Nucl. Mater. 471, 17–24 (2016)

    Article  CAS  Google Scholar 

  12. Aughterson, R.D., et al.: Ion-irradiation resistance of the orthorhombic Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) series. J. Nucl. Mat 467(2), 683–691 (2015)

    Article  CAS  Google Scholar 

  13. Zhang, J., et al.: Ion-irradiation-induced structural transitions in orthorhombic Ln2TiO5. Acta Mater. 61(11), 4191–4199 (2013)

    Article  CAS  Google Scholar 

  14. Tracy, C.L., Liang, M., Zhang, J., Zhang, F., Wang, Z., Ewing, R.C.: Structural response of A2TiO5 (A=La, Nd, Sm, Gd) to swift heavy ion irradiation. Acta Mater. 60(11), 4477–4486 (2012)

    Article  CAS  Google Scholar 

  15. Whittle, K.R., et al.: Ion irradiation of novel yttrium/ytterbium-based pyrochlores: The effect of disorder. Acta Mater. 59(20), 7530–7537 (2011)

    Article  CAS  Google Scholar 

  16. Whittle, K.R., et al.: Ion-beam irradiation of lanthanum compounds in the systems La2O3–Al2O3 and La2O3–TiO2. J. Solid State Chem. 183(10), 2416–2420 (2010)

    Article  CAS  Google Scholar 

  17. Pramudita, J.C., et al: Using in situ synchrotron x-ray diffraction to study lithium-and sodium-ion batteries: a case study with an unconventional battery electrode (Gd2TiO5). J. Mat. Res, 1–9 (2014)

  18. Pan, T.M., Lin, C.W.: High-kappa Dy2TiO5 Electrolyte-Insulator-Semiconductor Urea Biosensors. J. Electrochem. Soc. 158(4), J100–J105 (2011)

    Article  CAS  Google Scholar 

  19. Kao, C.H., Chen, H.A., Lin, S.P.: The comparison of the high-k Sm2O3 and Sm2TiO5 dielectrics deposited on the polycrystalline silicon. Electrochem Solid State Lett 14(2), G9–G12 (2011)

    Article  CAS  Google Scholar 

  20. Pan, T.M., et al.: A urea biosensor based on pH-sensitive Sm2TiO5 electrolyte-insulator-semiconductor. Anal. Chim. Acta 669(1–2), 68–74 (2010)

    Article  CAS  Google Scholar 

  21. Shepelev, Y.F., Petrova, M.A.: Crystal structures of Ln(2)TiO(5) (Ln = Gd, Dy) polymorphs. Inorg. Mater. 44(12), 1354–1361 (2008)

    Article  CAS  Google Scholar 

  22. Lau, G.C., et al.: Stuffed rare earth pyrochlore solid solutions. J. Solid State Chem. 179(10), 3126–3135 (2006)

    Article  CAS  Google Scholar 

  23. Aughterson, R.D., et al.: The ion-irradiation tolerance of the pyrochlore to fluorite Ho(x)Yb(2–x)TiO5 and Er2TiO5 compounds: a TEM comparative study using both in-situ and bulk ex-situ irradiation approaches. J. Nucl. Mater. 507, 316–326 (2018)

    Article  CAS  Google Scholar 

  24. Aughterson, R.D., et al.: The crystal structures and corresponding ion-irradiation response for the Tb(x)Yb(2–x)TiO5 series. Ceram. Int. 44(1), 511–519 (2018)

    Article  CAS  Google Scholar 

  25. Lau, G.C., et al.: Long- and short-range order in stuffed titanate pyrochlores. J. Solid State Chem. 181(1), 45–50 (2008)

    Article  CAS  Google Scholar 

  26. Withers, R., Thompson, J., Barlow, P.: An electron, and X-ray powder, diffraction study of cubic, fluorite-related phases in various ZrO2 Ln2O3 systems. J. Solid State Chem. 94(1), 89–105 (1991)

    Article  CAS  Google Scholar 

  27. Tabira, Y., et al: The strain-driven pyrochlore to “defect fluorite” phase transition in rare earth sesquioxide stabilized cubic zirconias. 159(1), 121–129 (2001)

  28. Kennedy, B.J., Hunter, B.A., Howard, C.J.J.J.o.S.S.C: Structural and bonding trends in tin pyrochlore oxides. 130(1), 58–65 (1997)

  29. Newman, R., Aughterson, R.D., Lumpkin, G.R.: Synthesis and Structure of Novel A2BO5 Compounds Containing A = Y, Yb, Gd, Sm, and La and B = Zr, Ti, and Sn. MRS Advances 3(20), 1117–1122 (2018)

    Article  CAS  Google Scholar 

  30. Lian, J., et al: Radiation-induced amorphization of rare-earth titanate pyrochlores. Phys. Rev. B. 68(13), 134107 (2003)

  31. Park, S., et al.: Swift-heavy ion irradiation response and annealing behavior of A2TiO5 (A= Nd, Gd, and Yb). J. Solid State Chem. 258, 108–116 (2018)

    Article  CAS  Google Scholar 

  32. Shamblin, J., et al.: Structural response of titanate pyrochlores to swift heavy ion irradiation. Acta Mater. 117, 207–215 (2016)

    Article  CAS  Google Scholar 

  33. Wang, S.X., et al.: Radiation stability of gadolinium zirconate: a waste form for plutonium disposition. J. Mater. Res. 14(12), 4470–4473 (1999)

    Article  CAS  Google Scholar 

  34. Begg, B., et al.: Heavy-ion irradiation effects in Gd2 (Ti2− xZrx) O7 pyrochlores. J. Nucl. Mater. 289(1–2), 188–193 (2001)

    Article  CAS  Google Scholar 

  35. Lian, J., et al.: Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect. J. Mater. Res. 19(5), 1575–1580 (2004)

    Article  CAS  Google Scholar 

  36. Lian, J., et al.: Ion beam irradiation in La2Zr2O7–Ce2Zr2O7 pyrochlore. Nucl. Instrum. Methods Phys. Res., Sect. B 218, 236–243 (2004)

    Article  CAS  Google Scholar 

  37. Cliff, G., Lorimer, G.W.: The quantitative analysis of thin specimens. J. Microsc. 103(2), 203–207 (1975)

    Article  Google Scholar 

  38. Hunter, B: Rietica - A Visual Rietveld Program. International Union of Crystallography Commission on Powder Diffraction. Newsletter number 20 (Summer) (1998)

  39. Fink, D., et al.: The ANTARES AMS facility at ANSTO. Nucl. Instrum. Methods Phys. Res., Sect. B 223–224, 109–115 (2004)

    Article  Google Scholar 

  40. Ziegler, J. F., Ziegler, J.P.B., M. D., SRIM The Stopping and Range of Ions in Matter. www.SRIM.org (2008)

  41. Lumpkin, G.R., et al.: Ion irradiation of ternary pyrochlore oxides. Chem. Mater. 21(13), 2746–2754 (2009)

    Article  CAS  Google Scholar 

  42. Stoller, R.E., et al.: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75–80 (2013)

    Article  CAS  Google Scholar 

  43. Aughterson, R.D., et al.: Crystal structures of orthorhombic, hexagonal, and cubic compounds of the Sm(x)Yb(2–x)TiO5 series. J. Solid State Chem. 213, 182–192 (2014)

    Article  CAS  Google Scholar 

  44. Rouanet, A.: Zirconium dioxide—Lanthanide oxide systems close to the melting point. Rev. Int. Hautes Temp. Refract 8(2), 161–180 (1971)

    CAS  Google Scholar 

  45. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  46. Mitchell, M.R., et al: 119 Sn MAS NMR and first-principles calculations for the investigation of disorder in stannate pyrochlores. 13(2), 488–497 (2011)

  47. de los Reyes, M., et al: The pyrochlore to defect fluorite phase transition in Y 2 Sn 2− x Zr x O 7. RSC Advances. 3(15), 5090–5099 (2013)

  48. Le Bail, A.: Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 20(4), 316–326 (2005)

    Article  Google Scholar 

  49. Whittle, K.R., et al.: Lanthanum pyrochlores and the effect of yttrium addition in the systems La2−xYxZr2O7 and La2−xYxHf2O7. J. Solid State Chem. 182(3), 442–450 (2009)

    Article  CAS  Google Scholar 

  50. Degen, T., et al: The highscore suite. 29(S2), S13-S18 (2014)

  51. Lian, J., et al.: Effect of structure and thermodynamic stability on the response of lanthanide stannate-pyrochlores to ion beam irradiation. J. Phys. Chem. B 110(5), 2343–2350 (2006)

    Article  CAS  Google Scholar 

  52. Tracy, C.L., et al: Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation. Phys. Rev. B. 94(6), 064102 (2016)

  53. Sickafus, K.E., et al.: Radiation tolerance of complex oxides. Science 289(5480), 748–751 (2000)

    Article  CAS  Google Scholar 

  54. Naguib, H., Kelly, R.: Criteria for bombardment-induced structural changes in non-metallic solids. Radiat. Eff. 25(1), 1–12 (1975)

    Article  CAS  Google Scholar 

  55. Trachenko, K.: Understanding resistance to amorphization by radiation damage. J. Phys. Condensed Matt 16(49), R1491–R1515 (2004)

    Article  CAS  Google Scholar 

  56. Wang, S.X., et al.: Ion irradiation of rare-earth- and yttrium-titanate-pyrochlores. Nucl. Instrum. Methods. Phys. Res. Sect. B-Beam Interact. Mat. Atoms 169, 135–140 (2000)

    Article  CAS  Google Scholar 

  57. Lumpkin, G., et al: Radiation Tolerance of A2Ti2O7 Compounds at the Cubicmonoclinic Boundary, in Pacific Basin Nuclear Conference (15th : 2006 : Sydney, Australia). 2006, Australian Nuclear Association: Sydney, N.S.W. p. [703]-[709]

Download references

Acknowledgements

The authors wish to thank Tim Palmer, NMDC, metallography, ANSTO, for his SEM specimen preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Aughterson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aughterson, R.D., Newman, R., Ionescu, M. et al. The ion irradiation tolerance of the fluorite RE2MO5 (RE = Sm, and Yb, M = Ti, Zr, and Sn) system. J Aust Ceram Soc 58, 287–298 (2022). https://doi.org/10.1007/s41779-021-00689-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00689-9

Keywords

Navigation