Skip to main content

Advertisement

Log in

Thermal and gas emission analysis of ceramic roofing tile pastes containing cigarette butt waste

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

This work focuses on the thermal transformations and gas emission of ceramic roofing tile pastes incorporated with up to 5 mass% of cigarette butt waste. Thermal and gas changes occurring during firing were determined by differential thermal analysis, thermogravimetry, dilatometric analysis, and photothermal technique. On heating, three endothermic effects and two exothermic effects in different temperature ranges were found. The endothermic effects accompanied by mass loss could be related to the release of adsorbed water, dehydration of hydroxides, and dehydroxylation of kaolinite. For all roofing tile pastes, an exothermic effect (~948.4–948.8 °C) associated with the formation of mullite was observed. However, the roofing tile paste incorporated with cigarette butt waste also presented an exothermic effect accompanied by mass loss at 350.2 °C due to the decomposition of cigarette butt waste, which influenced the total mass loss, thermal expansion–shrinkage curve, gas emission, and ceramic properties. The roofing tile pieces incorporated with up to 5 mass% of cigarette butt waste fired at 1100 °C showed ceramic properties (water absorption = 11.8–15.3 % and flexural strength = 8.3–12.4 MPa) in conformity for industrial roofing tile production. The thermal analysis results agree well with the gas emission and ceramic properties. Such results could be applied to determine the adequate amount of cigarette butt waste into the ceramic roofing tile paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Santos, P.S.: Clays Science and Technology, 2nd edn. Edgard Blücher, São Paulo (1989)

    Google Scholar 

  2. Ducman, V., Škapin, A.S., Radeka, M., Ranogajec, J.: Frost resistance of clay roofing tiles: case study. Ceram. Int. 37, 85–91 (2011)

    Article  CAS  Google Scholar 

  3. Salah, I.B., Sdiri, A., Jemai, M.B.M., Boughdiri, M.: Potential use of the lower cretaceous clay (Kef area, Northwestern Tunisia) as raw material to supply ceramic industry. Appl. Clay Sci. 161, 151–162 (2018)

    Article  Google Scholar 

  4. Temga, J.P., Mache, J.R., Madi, A.B., Nguetnkam, J.P., Bitom, D.L.: Ceramics applications of clay in Lake Chad Basin, Central Africa. Appl. Clay Sci. 171, 118–132 (2019)

    Article  CAS  Google Scholar 

  5. Faria, K.C.P., Holanda, J.N.F.: Thermal study of clay ceramic pastes containing sugarcane bagasse ash waste. J. Therm. Anal. Calorim. 114, 27–32 (2013)

    Article  CAS  Google Scholar 

  6. Pekdemir, A.D., Sarıkaya, Y., Önal, M.: Thermal transformation kinetics of a kaolinitic clay. J. Therm. Anal. Calorim. 123, 767–772 (2016)

    Article  CAS  Google Scholar 

  7. Nigay, P.M., Cutard, T., Nzihou, A.: The impact of heat treatment on the microstructure of a clay ceramic and its thermal and mechanical properties. Ceram. Int. 43, 1747–1754 (2017)

    Article  CAS  Google Scholar 

  8. Geng, J., Sun, Q.: Effects of high temperature treatment on physical-thermal properties of clay. Therm. Acta. 666, 148–155 (2018)

    Article  CAS  Google Scholar 

  9. González-Miranda, F.M., Garzón, E., Reca, J., Pérez-Villarejo, L., Martínez-Martínez, S., Sánchez-Soto, P.J.: Thermal behaviour of sericite clays as precursors of mullite materials. J. Therm. Anal. Calorim. 132, 967–977 (2018)

    Article  Google Scholar 

  10. Toledo, R., Santos, D.R., Faria Jr., R.T., Carrió, J.G., Auler, L.T., Vargas, H.: Gas release during clay firing and evolution of ceramic properties. Appl. Clay Sci. 27, 151–157 (2014)

    Article  Google Scholar 

  11. Akinshipe, O., Kornelius, G.: Chemical and thermodynamic processes in clay brick firing technologies and associated atmospheric emissions metrics - a review. J. Pollut. Eff. Control. 5, 1–12 (2017)

    Google Scholar 

  12. Buryan, P.: Gas generation during Cypris clay expansion. J. Therm. Anal. Calorim. 134, 981–992 (2018)

    Article  CAS  Google Scholar 

  13. Nath, A.J., Lal, R., Das, A.K.: Fired bricks: CO2 emission and food insecurity. Global Chall. 2, 1–5 (2018)

    Google Scholar 

  14. Jovanović, M., Mujkanović, A., Tutić, E.: Cigarette butts and waste coffee grounds as additives to brick clay. Holist Approach Environ. 10, 1–9 (2020)

    Article  Google Scholar 

  15. Rebischung, F., Chabot, L., Biaudet, H., Pandard, P.: Cigarette butts: a small but hazardous waste, according to European regulation. Waste Manag. 82, 9–14 (2018)

    Article  CAS  Google Scholar 

  16. Torkashvand, J., Farzadkia, M., Sobhi, H.R., Esrafili, A.: Littered cigarette butt as a well-known hazardous waste: a comprehensive systematic review. J. Hazard. Mater. 383, e121242 (2020)

    Article  Google Scholar 

  17. Kadir, A.A., Mohajerami, A.: Effect of heating rate on gas emissions and properties of fired clay bricks and fired clay bricks incorporated with cigarette butts. Appl. Clay Sci. 104, 269–276 (2015)

    Article  Google Scholar 

  18. Kurmus, H., Mohajerani, A.: The toxicity and valorization options of cigarette butts. Waste Manag. 104, 104–118 (2020)

    Article  CAS  Google Scholar 

  19. Poppendieck, D., Khurshid, S., Emmerich, S.: Measuring airborne emissions from cigarette butts: literature review and experimental plan, NISTIR 8147 Report. National Institute of Standards and Technology, USA (2016)

    Book  Google Scholar 

  20. NBR 15310. Ceramic components - ceramic roof tiles: terminology, requirements and testing methods, Rio de Janeiro (2005)

  21. Gualtieri, A., Belloto, M., Artioli, G.: Kinetic study of the kaolinite-mullite reaction sequence. Part II: mullite formation. Phys. Chem. Miner. 22, 215–222 (1995)

    Article  CAS  Google Scholar 

  22. Plevova, E., Vaculikova, L., Valovicova, V.: Thermal analysis and FT-IR spectroscopy of synthetic clay mineral mixtures. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09527-9

  23. Lucena, M.C.C., Alencar, A.E.V., Mazzeto, S.E., Soares, A.S.: The effect of additives on the thermal degradation of cellulose acetate. Polym. Degrad. Stab. 80, 149–155 (2003)

    Article  CAS  Google Scholar 

  24. Soltani, S.M., Yazdi, S.K., Hosseini, S.: Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters. Appl. Nanosci. 4, 551–569 (2014)

    Article  Google Scholar 

  25. Forster, M., Liu, C., Duke, M.G., McAdam, K.G., Proctor, C.J.: An experimental method to study emissions from heated tobacco between 100-200°C. Chem. Cent. J. 9, 1–10 (2015)

    Article  CAS  Google Scholar 

  26. Davies, A., Nicol, J.T.G., Liu, C., Tetteh, J., McAdam, K.: Identification of volatiles from heated tobacco biomass using direct thermogravimetric analysis - mass spectrometry and target factor analysis. Therm. Acta. 668, 132–141 (2018)

    Article  CAS  Google Scholar 

  27. Bou-Issa, R.A., Loiola, R.L., Holanda, J.N.F.: Reuse of paper sludge waste in the production of low-cost porous ceramic support. Cerâmica. 66, 106–113 (2020)

    Article  CAS  Google Scholar 

  28. Gomes, C.F.: Clays - What Are and For What Serve. Fundação Calouste Gulbenkian, Lisboa (1988)

    Google Scholar 

  29. Kamseu, E., Rizzuti, A., Miselli, P., Veronesi, P., Leonelli, C.: Use of noncontact dilatometry for the assessment of the sintering kinetics during mullitization of three kaolinitic clays from Cameroon. J. Therm. Anal. Calorim. 98, 757–763 (2009)

    Article  CAS  Google Scholar 

  30. Jenkins, R.A., Guerin, M.R., Tomkins, B.A.: The Chemistry of Environmental Tobacco Smoke: Composition and Measurement, 2nd edn. Lewis Publishers, Boca Raton (2000)

    Book  Google Scholar 

  31. Im, H., Rasouli, F., Hajaligol, M.: Formation of nitric oxide during tobacco oxidation. J. Agric. Food Chem. 51, 7366–7372 (2003)

    Article  CAS  Google Scholar 

  32. Godinho, K.O., Holanda, J.N.F., Silva, A.G.P.: Production and evaluation of technological properties of ceramic specimens based on the mix clay-recycled glass. Cerâmica. 51, 419–427 (2005)

    Article  Google Scholar 

  33. Ishida, H.K., Valente, A.C.F., Villegas, T.A., Pinzón, F.M.: Analysis of energy efficiency in selected industrial segments. Fecomércio 2018. www.fecomercio.com.br/noticia/usina-recicla-bitucas-de-cigarro-com-tecnologia-desenvolvida-por-universidade. Accessed 25 July 2020

Download references

Acknowledgements

This work was supported by National Council for Scientific and Technological Development - CNPq (Grant No. 307507/2019-0) and Foundation for Research Support of the State of Rio de Janeiro - FAPERJ (Grant No. E-26/203.013/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. F. Holanda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, L.A.R., Maciel, F.S., Faria, R.T. et al. Thermal and gas emission analysis of ceramic roofing tile pastes containing cigarette butt waste. J Aust Ceram Soc 57, 1275–1284 (2021). https://doi.org/10.1007/s41779-021-00619-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00619-9

Keywords

Navigation