Skip to main content

Advertisement

Log in

Optical and mechanical behavior of glass treated by ion exchange

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this work, the effect of glass ionic exchange parameters was studied. The results have shown that the optical transmission decreases as processing time increases. An increase in hardness was also found due to the occupation of the free spaces in the glass network by the exchanged potassium, which locally induces the increase of the density. The toughness of the glass was optimal when the thermochemical treatment is carried out at medium times, by compressing the surface layers. At lower times, the potassium concentration exchanged is less whereas the extended times lead to stress relaxation of induced compression. By performing a chemical etching and using the indentation technique, we followed the properties in depth. Their evolution, below the surface, is a function of diffused potassium concentration. Raman spectroscopy was used to study the variation of the microstructure of the treated glass during different immersion times. The photoelastic measurement of Vickers indentation imprints highlights the evolution of the residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nordberg, M.E., Mochel, E.L., Garfinkel, H.M., Olcott, J.S.: Strengthening by ion exchange. J. Am. Ceram. Soc. 47(5), 215–219 (1964)

    CAS  Google Scholar 

  2. Donald, I.W.: Methods for improving the mechanical properties of oxide glasses. A review. J. Mater. Sci. 24, 4177–4208 (1989)

    CAS  Google Scholar 

  3. Leboeuf, V., Blondeau, J.P., De Sousa Meneses, D., Véron, O.: Potassium ionic exchange in glasses for mechanical property improvement. J. Non-Cryst. Solids. 377, 60–65 (2013)

    CAS  Google Scholar 

  4. Datsiou, K.C., Hall, D., Overend, M.: Repair of soda-lime glass. Glass Struct. Eng. 3 :125–137 (2018). https://doi.org/10.1007/s40940-018-0064-y

    Google Scholar 

  5. Talimian, A., Mariotto, G., Sglavo, V.M.: Electric field-assisted ion exchange strengthening of borosilicate and soda lime silicate glass. Int. J. Appl. Glas. Sci. 1–10 (2017). https://doi.org/10.1111/ijag.12266

    CAS  Google Scholar 

  6. Karlsson, S., Ali, S., Limbach, R., Strand, M., Wondraczek, L.: Alkali salt vapour deposition and in-line ion exchange on flat glass surfaces. Glass Technol. Eur. J. Glass Sci. Technol. A. 56(6), 203–213 (2015)

    Google Scholar 

  7. Koike, A., Akiba, S., Sakagami, T., Hayashi, K., Ito, S.: Difference of cracking behavior due to Vickers indentation between physically and chemically tempered glasses. J. Non-Cryst. Solids. 358, 3438–3444 (2012)

    CAS  Google Scholar 

  8. Karlsson, S., Jonson, B., Stalhandske, C.: The technology of chemical glass strengthening - a review. Glass Technol. Eur. J. Glass Sci. Technol. A. 51(2), 41–54 (2010)

    CAS  Google Scholar 

  9. Varshneya, A.K.: The physics of chemical strengthening of glass: room for a new view. J. Non-Cryst. Solids. 356, 2289–2294 (2010)

    CAS  Google Scholar 

  10. Li, X., Jiang, L., Wang, Y., Mohagheghian, I., Dear, J.P., Li, L., Yan, Y.: Correlation between K+-Na+ diffusion coefficient and flexural strength of chemically tempered aluminosilicate glass. J. Non-Cryst. Solids. 1–10 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.011

    CAS  Google Scholar 

  11. Mazzoldi, P., Caraturan, S., Quaranta, A., Sada, C., Sglavo, V.M.: Ion exchange process : history, evolution and applications. Riv. Nuovo Cimento. 36(9), 397–460 (2013)

    CAS  Google Scholar 

  12. Donald, I.W., Hill, M.J.C.: Preparation and mechanical behavior of some chemically strengthened lithium magnesium alumino-silicate glasses. J. Mater. Sci. 23, 2797–2809 (1988)

    CAS  Google Scholar 

  13. Jiang, L., Guo, X., Li, X., Li, L., Zhang, G., Yan, Y.: Different K+- Na+ inter diffusion kinetics between the air side and tin side of an ion-exchanged float aluminosilicate glass. Appl. Surf. Sci. 265, 889–894 (2013)

    CAS  Google Scholar 

  14. Sglavo, V.M., Quaranta, A., Allodi, V., Mariotto, G.: Analysis of the surface structure of soda lime silicate glass after chemical strengthening in different KNO3 salt baths. J. Non-Cryst. Solids. 401, 105–109 (2014)

    CAS  Google Scholar 

  15. Jiang, L., Wang, Y., Mohagheghian, I., Li, X., Guo, X., Li, L., Dear, J.P., Yan, Y.: Effect of residual stress on the fracture of chemically strengthened thin aluminosilicate glass. J. Mater. Sci. (2016). https://doi.org/10.1007/s10853-016-0434-2

    Google Scholar 

  16. Varshneya, A.K.: Chemical strengthening of glass: lessons learned and yet to be learned. Int. J. Appl. Glas. Sci. 1(2), 131–142 (2010)

    CAS  Google Scholar 

  17. Jannotti, P., Subhash, G., Ifju, P., Kreski, P.K., Varshneya, A.K.: Photoelastic measurement of high stress profiles in ion-exchanged glass. Int. J. Appl. Glas. Sci. 2(4), 275–281 (2011)

    CAS  Google Scholar 

  18. Gy, R.: Ion exchange for glass strengthening - a review. Mater. Sci. Eng. B. 149, 159–165 (2008)

    CAS  Google Scholar 

  19. Li, X., Jiang, L., Zhang, X., Yan, Y.: Influence of residual compressive stress on nanoindentation response of ion-exchanged aluminosilicate float glass on air and tin sides. J. Non-Cryst. Solids. 385, 1–8 (2014)

    CAS  Google Scholar 

  20. Sglavo, V.M., Talimian, A., Ocsko, N.: Influence of salt bath calcium contamination on soda lime silicate glass chemical strengthening. J. Non-Cryst. Solids. 458, 121–128 (2017)

    CAS  Google Scholar 

  21. Saggioro, B.Z., Ziemath, E.C.: Changes of physical properties of glass surfaces exposed to KNO3 vapors. J. Non-Cryst. Solids. 352, 2783–2790 (2006)

    CAS  Google Scholar 

  22. Talimian A, V.M., Sglavo.: Electric field-assisted ion exchange of borosilicate glass tubes. Chapter 5, Licensee InTech, 139–152 (2015). https://doi.org/10.5772/60805

    Google Scholar 

  23. Oven, R., Batchelor, S., Ashworth, D.G.: Effects of annealing electric field assisted K+- Na+ ion exchanged soda-lime glass guides. J. Phys. D: Appl. Phys. 32, 650–655 (1999)

    CAS  Google Scholar 

  24. Gonella, F., Cattaruzza, E., Quaranta, A., Ali, S., Argiolas, N., Sada, C.: Diffusion behavior of transition metals in field-assisted ion-exchange glasses. Solid State Ionics. 177, 3151–3155 (2006)

    CAS  Google Scholar 

  25. Tyagi, V., Varshneya, A.K.: Measurement of progressive stress buildup during ion exchange in alkali aluminosilicate glass. J. Non-Cryst. Solids. 238, 186–192 (1998)

    CAS  Google Scholar 

  26. Quaranta, A., Cattaruzza, E., Gonella, F.: Modelling the ion exchange process in glass : phenomenological approaches and perspectives. Mater. Sci. Eng. B. 149, 133–139 (2008)

    CAS  Google Scholar 

  27. Ajovalasit, A., Petrucci, G., Scafidi, M.: Photoelastic analysis of edge residual stresses in glass by automated ‘test fringes’ methods. Exp. Mech. 52, 1057–1066 (2012)

    Google Scholar 

  28. Youmei, J., Linge, J.: Effect of additives in the salt bath on glass strengthening. J. Non-Cryst. Solids. 80, 300–306 (1986)

    Google Scholar 

  29. Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness : I, direct crack measurements. J. Am. Ceram. Soc. 64(9), 533–538 (1981)

    CAS  Google Scholar 

  30. Marshall, D.B., Lawn, B.R.: An indentation technique for measuring stresses in tempered glass surfaces. J. Am. Ceram. Soc. 60(1-2), 86–87 (1977)

    CAS  Google Scholar 

  31. Erdem, I., Guldiren, D., Aydin, S.: Chemical tempering of soda lime silicate glasses by ion exchange process for the improvement of surface and bulk mechanical strength. J. Non-Cryst. Solids. 473, 170–178 (2017)

    CAS  Google Scholar 

  32. Albert, J., Yip, G.L.: Stress-induced index change for K+- Na+ ion exchange in glass. Electron. Lett. 23(14), 737–738 (1987)

    Google Scholar 

  33. Garza-Méndez, F.J., Hinojosa-Rivera, M., Gomez, I., Sanchez, E.M.: Scaling properties of fracture surfaces on glass strengthened by ionic exchange. Appl. Surf. Sci. 254, 1471–1474 (2007)

    Google Scholar 

  34. Guldiren, D., Erdem, I., Aydin, S.: Influence of silver and potassium ion exchange on physical and mechanical properties of soda lime glass. J. Non-Cryst. Solids. 441, 1–9 (2016)

    CAS  Google Scholar 

  35. Jannotti, P., Subhash, G., Ifju, P., Kreski, P.K., Varshneya, A.K.: Influence of ultra-high residual compressive stress on the static and dynamic indentation response of a chemically strengthened glass. J. Eur. Ceram. Soc. 32, 1551–1559 (2012)

    CAS  Google Scholar 

  36. Cesar, P.F., Gonzaga, C.C., Miranda Jr., W.G., Yoshimura, H.N.: Effect of ion exchange on hardness and fracture toughness of dental porcelains. J Biomed Mater Res B Appl Biomater. 83B, 538–545 (2007)

    CAS  Google Scholar 

  37. Houérou, V.L., Sangleboeuf, J.-C., Dériano, S., Rouxel, T., Duisit, G.: Surface damage of soda-lime-silica glasses : indentation scratch behavior. J. Non-Cryst. Solids. 316, 54–63 (2003)

    Google Scholar 

  38. Kese, K.O., Li, Z.C., Bergman, B.: Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation. J. Mater. Res. 19(10), 3109–3119 (2004)

    CAS  Google Scholar 

  39. Toth, Z., Nagy, A., Steinbach, G., Juhasz, A.: Investigation of indentation-caused cracking in surface-modified silica glasses. J. Mater. Sci. Eng. A. 387-389, 542–545 (2004)

    Google Scholar 

  40. Shen, J., Green, D.J.: Prediction of stress profiles in ion-exchanged glasses. J. Non-Cryst. Solids. 344, 79–87 (2004)

    CAS  Google Scholar 

  41. Ziemath, E.C., Saggioro, B.Z., Fossa, J.S.: Physical properties of silicate glasses doped with SnO2. J. Non-Cryst. Solids. 351, 3870–3878 (2005)

    CAS  Google Scholar 

  42. Seghi, R.R., Denry, I., Brajevic, F.: Effects of ion exchange on hardness and fracture toughness of dental ceramics. Int. J. Prosthodont. 5(4), 309–314 (1992)

    CAS  Google Scholar 

  43. Green, D.J., Tandon, R., Sgalvo, V.M.: Crack arrest and multiple cracking in glass through the use of designed residual stress profiles. Science. 283, 1295–1397 (1999)

    CAS  Google Scholar 

  44. Shen, J., Green, J., Tressler, R.E., Shelleman, D.L.: Stress relaxation of a soda lime silicate glass below the glass transition temperature. J. Non-Cryst. Solids. 324, 277–288 (2003)

    CAS  Google Scholar 

  45. Morris, D.J., Myers, S.B., Cook, R.F.: Indentation crack initiation in ion-exchanged aluminosilicate glass. J. Mater. Sci. 39, 2399–2410 (2004)

    CAS  Google Scholar 

  46. Bradshaw, W.: Stress profile determination in chemically strengthened glass using scattered light. J. Mater. Sci. 14, 2981–2988 (1979)

    CAS  Google Scholar 

  47. Sane, A.Y., Cooper, A.R.: Stress buildup and relaxation during ion exchange strengthening of glass. J. Am. Ceram. Soc. 70(2), 86–89 (1987)

    CAS  Google Scholar 

  48. Sglavo, V.M., Bonafini, M., Prezzi, A.: Procedure for residual stress profile determination by curvature measurements. Mech. Mater. 37, 887–898 (2005)

    Google Scholar 

  49. Jain, V., Varshneya, A.K.: Finite-element analysis of network dilatation in ion-exchanged glass rods after slicing. J. Am. Ceram. Soc. 70(8), 595–598 (1987)

    CAS  Google Scholar 

  50. Galeener, F.L., Geissberger, A.E.: Vibrational dynamics in 30Si-substituted vitreous SiO2. Phys. Rev. B. 27(10), 6199–6204 (1983)

    CAS  Google Scholar 

  51. McMillan, P.: Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am. Mineral. 69, 622–644 (1984)

    CAS  Google Scholar 

  52. Lenoir, M., Grandjean, A., Poissonnet, S., Neuville, D.R.: Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy. J. Non-Cryst. Solids. 355, 1468–1473 (2009)

    CAS  Google Scholar 

  53. Colomban, P., Tournie, A., Gurlet, L.B.: Raman identification of glassy silicates used in ceramics, glass and jewellery : a tentative differentiation guide. J. Raman Spectrosc. 37, 841–852 (2006)

    CAS  Google Scholar 

  54. Chorfa, A., Belkhir, N., Rubio, F., Rubio, J.: Ion exchange effect on the structural and mechanical behavior of colored glasses. J. Aust. Ceram. Soc. (2017). https://doi.org/10.1007/s41779-017-0092-0

    CAS  Google Scholar 

  55. Anunmana, C., Anusavice, K.J., Mecholsky Jr., J.J.: Residual stress in glass : indentation crack and fractography approaches. Dent. Mater. 25, 1453–1458 (2009)

    CAS  Google Scholar 

  56. Kese, K., Rowcliffe, D.J.: Nanoindentation method for measuring residual stress in brittle materials. J. Am. Ceram. Soc. 86(5), 811–816 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Younes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younes, L., Hamidouche, M. & Ayadi, K. Optical and mechanical behavior of glass treated by ion exchange. J Aust Ceram Soc 56, 309–321 (2020). https://doi.org/10.1007/s41779-019-00410-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00410-x

Keywords

Navigation