Skip to main content
Log in

Structural, magnetic, and electrical properties of Gd-substituted LaFeO3 prepared by co-precipitation method

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Gd-substituted LaFeO3 polycrystalline samples were prepared by the co-precipitation method. A detailed investigation of the structural, magnetic, and electrical properties of the La1−xGdxFeO3 system was performed. The differences of the ionic radius and the electron configuration between Gd and La cause the distortion of the crystal structure. We have related it to the development of the magnetic and electrical properties. In addition, we provide the effect of the microstructure. The systematic variation of the octahedral-site tilting have been deduced by XRD, IR, and magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang, Y., Yang, X., Lu, L., Wang, X.: Experimental study on preparation of LaMO3 (M = Fe, Co, Ni) nanocrystals and their catalytic activity. Thermochim Acta. 443, 225–230 (2006)

    Article  Google Scholar 

  2. Khetre, S.M., Chopade, A.U., Khilare, C.J., Kulal, S.R., Jadhav, H.V., Jagadale, P.N., Bangale, S.V., Bamane, S.R.: Ethanol gas sensing properties of nano-porous LaFeO3 thick films. J of Shivaji Uni (Sci & Tech). 41(2), 250–5347,1-3 (2014)

    Google Scholar 

  3. Paul Blessington Selvadurai, A., Pazhanivelu, V., Jagadeeshwaran, C., Murugaraj, R., Panneer Muthuselvam, I., Chou, F.C.: Influence of Cr substitution on structural, magnetic and electrical conductivity spectra of LaFeO3. J Alloys Compd. 646, 924–931 (2015)

    Article  Google Scholar 

  4. Phokha, S., Hunpratup, S., Pinitsoontorn, S., Putasaeng, B., Rujirawat, S., Maensiri, S.: Structure, magnetic, and dielectric properties of Ti-doped LaFeO3 ceramics synthesized by polymer pyrolysis method. Mater Res B. 67, 118–125 (2015)

    Article  Google Scholar 

  5. Thirumalairajan, S., Girija, K., Mastelar, V.R., Ponpandian, N.: Investigation on magnetic and electric properties of morphologically different perovskite LaFeO3 nanostructures. J Mater Sci Mater Electron. 26, 8652–8662 (2015)

    Article  Google Scholar 

  6. Hao Hung, M., Madhava Rao, M.V., Shyang Tsai, D.: Microstructures and electrical properties of calcium substituted LaFeO3 as SOFC cathode. Mater Chem Phys. 101, 297–302 (2007)

    Article  Google Scholar 

  7. Acharya, S., Mondal, J., Ghosh, S., Roy, S.K., Chakrabarti, P.K.: Multiferroic behavior of lanthanum orthoferrite (LaFeO3). MaterLett. 64, 415–418 (2010)

    Google Scholar 

  8. Shikha, P., Kang, T.S., Randhawa, B.S.: Effect of different synthetic routes on the structural, morphological and magnetic properties of Ce doped LaFeO3 nanoparticles. J Alloys Compd. 625, 336–345 (2015)

    Article  Google Scholar 

  9. Hosseini, S.A., Taghi, M., Sorkhani, S., Ahmadi, L.K., Alemi, A., Niaei, A., Salari, D.: Synthesis, characterization, and catalytic activity of nanocrystalline La1-xEuxFeO3 during the combustion of toluene. Chin J Catal. 32, 1465–1468 (2011)

    Article  Google Scholar 

  10. Ekaphan, S., Attaphol, K., Sumalin, P., Sitchai, H., Thanin, P.: Investigation of structural, morphological, optical, and magnetic properties of Sm-doped LaFeO3 nanopowders prepared by sol–gel method. J Sol Gel Technol. 81, 483–492 (2017). https://doi.org/10.1007/s10971-016-4212-z

    Article  Google Scholar 

  11. Woodward, P.M.: Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr Sect B: Struct Sci. 53, 32–43 (1997)

    Article  Google Scholar 

  12. Aleksandrov, K.S., Bartolome, J.: Structural distortions in families of perovskite-like crystals. Phase Transition. 74, 255–335 (2001)

    Article  Google Scholar 

  13. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976)

    Article  Google Scholar 

  14. Zhou, J.S., Goodenough, J.B.: Intrinsic structural distortion in orthorhombic perovskite oxides. Phys Rev B. 77, 132104-1-4 (2008). https://doi.org/10.1103/PhysRevB.77.132104

    Google Scholar 

  15. Treves, D.: Studies on orthoferrites at the Weizmann Institute of Science. J Appl Phys. 36, 1033–1039 (1965)

    Article  Google Scholar 

  16. Seo, J.W., Fullerton, E.E., Nolting, F., Scholl, A., Fompeyrine, J., Locquet, J.P.: Antiferromagnetic LaFeO3 thin films and their effect on exchange bias. J Phys Condens Matter. 20, 264014-1-10 (2008)

    Article  Google Scholar 

  17. Raju, G.G.: Dielectric in electric fields. CRC press. (2003)

  18. Romero, M., Gómez, R.W., Marquina, V., Pérez-Mazariego, J.L., Pérez-Mazariego, J.L., Escamilla, R.: Synthesis by molten salt method of theAFeO3 system (A=La, Gd)and its structural, vibrational and internal hyperfine magnetic field characterization. Physica B. 443, 90–94 (2014)

    Article  Google Scholar 

  19. Wiglusz, R.J., Kordek, K., Małecka, M., Ciupa, A., Ptak, M., Pazik, R., Pohlc, P., Kaczorowskia, D.: A new approach in the synthesis of La1−xGdxFeO3perovskite nanoparticles – structural and magnetic characterization. The Royal Society of Chemistry (Dalton Trans). 44, 20067–20074 (2015). https://doi.org/10.1039/c5dt03378k

    Article  Google Scholar 

  20. Cullity, B.D.: Elements of X-ray diffraction. Adison-Wesley Publ. Co., London (1967)

    Google Scholar 

  21. Pecharsky, V.K., Zavalij, P. Y. : Fundamentals of powder diffraction and structural characterization of materials, Springer Science +Business Media, Inc. (2003)

  22. Vasylechko, L., Akselrud, L., Matkovskii, A., Sugak, D., Durygin, A., Frukacz, Z.: Crystal structure of the compound Y0.5Er0.5AlO3. J Alloys Compd. 242, 18–21 (1996)

    Article  Google Scholar 

  23. Ain, M., Delrieu, J.-M., Menelle, A., Parette, G., Jegoudez, J.: Orthorhombicity and oxygen uptake by YBa2Cu3O6 + x. J Phys France. 50, 1455–1461 (1989)

    Article  Google Scholar 

  24. Yuantao, N.: Influence of Gd addition on the structure and properties of Au-Ni and Au-Ni-Cr alloys. Gold Bull. 39/4, 220–225 (2006)

    Google Scholar 

  25. Gao, F., Lewis, R.A., Wang, X.L., Dou, S.X.: Infrared absorption of lanthanum manganites. Physica C. 2235, 341–348 (2000)

    Google Scholar 

  26. Paolone, A., Roy, P., Pimenov, A., Loidl, A., Mel’nikov, O.K., Shapiro, A.Y.: Infrared phonon spectrum of pure and doped LaMnO3. Phys Rev. 61(17), 11255–11258 (2000)

    Article  Google Scholar 

  27. Wang, X., Cui, Q.L., Pan, Y.W., Gao, W., Zhang, J., Zou, G.T.: High pressure effects on the Jahn-Teller distortion in perovskite La0.5-xBixCa0.5MnO3. J Alloys Compd. 321, 72–75 (2001)

    Article  Google Scholar 

  28. Mazen, S.A., Mansour, S.F., Dhahri, E., Zaki, H.M., Elmosalami, T.A.: The infrared absorption and dielectric properties of Li–Ga ferrite. J Alloys Compd. 470, 294–300 (2009)

    Article  Google Scholar 

  29. Ivanovskaya, M.I., Tolstik, A.I., Kotsikau, D.A., Pankov, V.V.: The structural characteristics of Zn–Mn ferrite synthesized by spray pyrolysis. Russ J Phys Chem. A83(12), 2081–2086 (2009)

    Article  Google Scholar 

  30. Salah, L.M.: Spectroscopic studies of the effect of addition of Y3+ on structural characteristics of Ni-Zn ferrites. Phys Stat Sol (a). 203(2), 271–281 (2006). https://doi.org/10.1002/pssa.200521285

    Article  Google Scholar 

  31. Gupta, R., Sood, A.K., Metecalf, P., Honig, J.M.: Raman study of stoichiometric and Zn-doped Fe3O4. Phys Rev. 65, 104430-1-8 (2002)

    Google Scholar 

  32. Mathur, P., Thakur, A., Singh, M.: Effect of nanoparticles on the magnetic properties of Mn–Zn soft ferrite. J Magn Mater. 320, 1364–1369 (2008)

    Article  Google Scholar 

  33. Eibschutz, M., Shtrikman, S., Trevest, D.: Mössbauer studies of Fe57 in orthoferrites. Phys Rev. 156(2), 562–577 (1967)

    Article  Google Scholar 

  34. Jadhav, S.S., Shirsath, S.E., Patange, S.M., Jadhav, K.M.: Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. J Appl Phys. 108(093920), 1–6 (2010)

    Google Scholar 

  35. Diandra, L.L., Reuben, D.R.: Magnetic properties of nanostructured materials. Chem Mater. 8, 1770–1783 (1996)

    Article  Google Scholar 

  36. Mostafa, M.F., Montasser, S.S.: AC conduction mechanism in perovskite-like dimers(C2H8NO)2M2X6, M=Co/Cu, X=Cl/Br. Z. Naturforsch. 55a, 945–956 (2000)

    Google Scholar 

  37. Low, K.O., Sale, F.R.: Electromagnetic properties of gel-derived NiCuZn ferrites. J Magn Magn Mater. 246, 30–35 (2002)

    Article  Google Scholar 

  38. Hemberger, J., Lobina, S., Krug von Nidda, H.-A., Tristan, N., Ivanov, V.Y., Mukhin, A.A., Balbashov, A.M., Loid, A.: Complex interplay of 3d and 4f magnetism in La1−xGdxMnO3. Phys Rev B. 70, 024414-70 1-8 (2004). https://doi.org/10.1103/PhysRevB.70.024414

    Article  Google Scholar 

  39. Zhou J.-S.,, Goodenough, J.B. : Orbital order-disorder transition in single-valent manganites. Phys. Rev. B 68, (2003) https://doi.org/10.1103/PhysRevB.68.144406

  40. Kimura, T., Ishihara, S., Shintani, H., Arima, T., Takahashi, K.T., Ishizaka, K., Tokura, Y.: Distorted perovskite with e1 g configuration as a frustrated spin system. Phys Rev B. 68, 060403-1-4 (2003)

    Article  Google Scholar 

  41. Liu, J., Duan, C., Yin, W., Mei, W.N., Smith, R.W., Hard, J.: Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12. Phys Rev B. 70, 144106-1-7 (2004)

    Google Scholar 

  42. Abdeen, A.M.: Dielectric behaviour in Ni–Zn ferrites. J Magn Magn Mater. 192, 121–129 (1999)

    Article  Google Scholar 

  43. Elkestawy, M.A., Kader, S.E., Amer, M.A.: AC conductivity and dielectric properties of Ti-doped CoCr1.2Fe0.8O 4 spinel ferrite. Phys B. 405, 619–624 (2010)

    Article  Google Scholar 

  44. Patange, S.M., Shirsath, S.E., Lohar, K.S., Jadhav, S.S., Kulkarni, N., Jadhav, K.M.: Electrical and switching properties of NiAlxFe2−xO4 ferrites synthesized by chemical method. Phys B : Condensed Matter. 406, 663–668 (2011)

    Article  Google Scholar 

  45. Farea, A.M.M., Kumar, S., Batoo, K.M., Yousef, A., Lee, C.G.A.: Structure and electrical properties of Co0.5CdxFe2.5−xO4 ferrites. J Alloys Compd. 464, 361–369 (2008)

    Article  Google Scholar 

  46. Tan, M., Koseoglu, Y., Alan, F., Sentrurk, E.: Overlapping large polaron tunneling conductivity and giant dielectric constant in Ni0.5Zn0.5Fe1.5Cr0.5O4 nanoparticles (NPs). J Alloys Compd. 509, 9399–9405 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Central Metallurgical Research and Development Institute, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Salah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, L.M., Haroun, M. & Rashad, M.M. Structural, magnetic, and electrical properties of Gd-substituted LaFeO3 prepared by co-precipitation method. J Aust Ceram Soc 54, 357–368 (2018). https://doi.org/10.1007/s41779-017-0160-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0160-5

Keywords

Navigation