Skip to main content
Log in

Numerical Studies on Magnetic Driven Targeted Drug Delivery in Human Vasculature

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Magnetic driven targeted drug delivery (TDD) involves the manipulation of magnetic drug carriers, such as nano/micro particles or bubbles, within the body using external magnetic fields to precisely reach the intended target location. This method is utilized in treating severe illnesses like cancerous tumors and nervous disorders, offering higher efficacy with reduced drug dosages and side effects. While numerous studies have simulated magnetic driven TDD, comprehensive reviews remain scarce. This article presents an extensive review of computational/numerical work done on magnetic driven TDD utilizing both microbubbles and non-bubbles (nano/micro particles) within human vasculature and lung airways. The study aims to analyze the drug delivery problem from physical and numerical perspectives. Key highlights include artery wall models (rigid, flexible, or porous), models of force acting on particles, relevant governing equations, discussions on parameters of interest and their effects on drug delivery efficacy. Finally, the article briefly outlines common trends observed in magnetic driven TDD problems and their underlying physical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article itself and its supplementary materials.

Notes

  1. Magnetic number: A non-dimensional number that is proportional to magnetic field strength.

  2. CE is the fraction of the number of particles that get captured in the region of interest with respect to the total number of injected particles.

  3. Targeting efficiency is defined as the fraction of the inlet particles that got captured in the target region with respect to the number of particles released at the inlet.

  4. A drug elimination parameter represents an irrevocable body mechanism that removes administered drugs from it.

  5. The MFF comprised a combination of positive and negative pulsed magnetic fields generated by electromagnetic coils. The purpose of the MFF was to prevent nanoparticles from adhering to the vessel walls during magnetic guidance.

References

  1. Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329

    Article  Google Scholar 

  2. Sommerfeld M (2000) Theoretical and experimental modeling of particulate flow. VKI lecture series 2000-06

  3. Elghobashi S, Truesdell G (1992) Direct simulation of particle dispersion in a decaying isotropic turbulence. J Fluid Mech 242:655–700

    Article  CAS  Google Scholar 

  4. Turton R, Levenspiel O (1986) A short note on the drag correlation for spheres. Powder Technol 47(1):83–86

    Article  CAS  Google Scholar 

  5. Haik Y, Pai CJC V (1999) Biomagnetic fluid dynamics, fluid dynamics at interfaces, pp 439–452

  6. Bernad SI, Bernad E (2022) Magnetic forces by permanent magnets to manipulate magnetoresponsive particles in drug-targeting applications. Micromachines 13(11):1818

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lunnoo T, Puangmali T (2015) Capture efficiency of biocompatible magnetic nanoparticles in arterial flow: a computer simulation for magnetic drug targeting. Nanoscale Res Lett 10:1–11

    Article  CAS  Google Scholar 

  8. Ounis H, Ahmadi G, McLaughlin JB (1991) Brownian diffusion of submicrometer particles in the viscous sublayer. J Colloid Interface Sci 143(1):266–277

    Article  CAS  Google Scholar 

  9. Crowe CT, Schwarzkopf JD, Sommerfeld M, Tsuji Y (2011) Multiphase Flows with Droplets and Particles. CRC Press, Boca Raton

    Book  Google Scholar 

  10. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22(2):385–400

    Article  Google Scholar 

  11. Shamloo A, Amani A, Forouzandehmehr M, Ghoytasi I (2019) In silico study of patient-specific magnetic drug targeting for a coronary lad atherosclerotic plaque. Int J Pharm 559:113–129

    Article  CAS  PubMed  Google Scholar 

  12. Karimi A, Navidbakhsh M, Shojaei A, Hassani K, Faghihi S (2014) Study of plaque vulnerability in coronary artery using Mooney–Rivlin model: a combination of finite element and experimental method. Biomed Eng Appl Basis Commun 26(01):1450013

    Article  Google Scholar 

  13. Morega A, Dobre A, Morega M (2011) Magnetic field-flow interactions in drug delivery through an arterial system. Rev Roumaine des Sci Tech Electrotech Energetique 56:199–208

    Google Scholar 

  14. Bangash MYH, Al-Obaid Y, Bangash F, Bangash T (2007) Trauma—an engineering analysis: with medical case studies investigation. Springer, Berlin

    Google Scholar 

  15. Zhang X, Luo M, Wang E, Zheng L, Shu C (2020) Numerical simulation of magnetic nano drug targeting to atherosclerosis: effect of plaque morphology (stenosis degree and shoulder length). Comput Methods Programs Biomed 195:105556

    Article  PubMed  Google Scholar 

  16. Alimohamadi H, Imani M (2014) Transient non-Newtonian blood flow under magnetic targeting drug delivery in an aneurysm blood vessel with porous walls. Int J Comput Methods Eng Sci Mech 15(6):522–533

    Article  CAS  Google Scholar 

  17. Tiwari A, Chauhan SS (2019) Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: a comparative study. Microvasc Res 123:99–110

    Article  PubMed  Google Scholar 

  18. Ochoa-Tapia JA, Whitaker S (1995) Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development. Int J Heat Mass Transf 38(14):2635–2646

    Article  CAS  Google Scholar 

  19. Srivastava A, Srivastava N (2005) Flow past a porous sphere at small reynolds number. Zeitschrift für angewandte Mathematik und Physik ZAMP 56:821–835

    Article  Google Scholar 

  20. Merrill E, Benis A, Gilliland E, Sherwood T, Salzman E (1965) Pressure-flow relations of human blood in hollow fibers at low flow rates. J Appl Physiol 20(5):954–967

    Article  CAS  PubMed  Google Scholar 

  21. Kim S (2002) A study of non-Newtonian viscosity and yield stress of blood in a scanning capillary-tube rheometer. Drexel University, Philadelphia, PA 19104, United States

  22. Baskurt OK, Meiselman HJ (2003) Blood rheology and hemodynamics. In: Seminars in thrombosis and hemostasis, vol 29, pp. 435–450. Copyright 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New

  23. Johnston BM, Johnston PR, Corney S, Kilpatrick D (2004) Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech 37(5):709–720

    Article  PubMed  Google Scholar 

  24. Ballyk P, Steinman D, Ethier C (1994) Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 31(5):565–586

    Article  CAS  PubMed  Google Scholar 

  25. Sodagar H, Sodagar-Abardeh J, Shakiba A, Niazmand H (2021) Numerical study of drug delivery through the 3D modeling of aortic arch in presence of a magnetic field. Biomech Model Mechanobiol 20:787–802

    Article  PubMed  Google Scholar 

  26. González HA, Moraga NO (2005) On predicting unsteady non-Newtonian blood flow. Appl Math Comput 170(2):909–923

    Google Scholar 

  27. Bose S, Banerjee M (2015) Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel. J Magn Magn Mater 374:611–623

    Article  CAS  Google Scholar 

  28. Tang HS, Kalyon DM (2004) Estimation of the parameters of Herschel–Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers. Rheol Acta 43:80–88

    Article  CAS  Google Scholar 

  29. Haghdel M, Kamali R, Haghdel A, Mansoori Z (2017) Effects of non-Newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery. Nanomed J 4(2):1

    Google Scholar 

  30. Molla MM, Paul M (2012) Les of non-Newtonian physiological blood flow in a model of arterial stenosis. Med Eng Phys 34(8):1079–1087

    Article  CAS  PubMed  Google Scholar 

  31. Taylor M (1955) The flow of blood in narrow tubes. Aust J Exp Biol Med Sci 33(1):1

    Article  CAS  PubMed  Google Scholar 

  32. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A 4(1):30–40

    Article  CAS  Google Scholar 

  33. Lin X, Zhang C, Li K (2015) Statistical mechanics transport model of magnetic drug targeting in permeable microvessel. J Nanotechnol Eng Med 6(1):011001

    Article  Google Scholar 

  34. Badfar H, Yekani Motlagh S, Sharifi A (2020) Numerical simulation of magnetic drug targeting to the stenosis vessel using Fe\(_3\) O\(_4\) magnetic nanoparticles under the effect of magnetic field of wire. Cardiovasc Eng Technol 11:162–175

    Article  PubMed  Google Scholar 

  35. Ardalan A, Aminian S, Seyfaee A, Gharehkhani S (2021) Effects of geometrical parameters on the capture efficiency of nanoparticles under the influence of the magnetic field in a stenosed vessel. Powder Technol 380:39–46

    Article  CAS  Google Scholar 

  36. Gul A, Tzirtzilakis EE, Makhanov SS (2022) Simulation of targeted magnetic drug delivery: Two-way coupled biomagnetic fluid dynamics approach. Phys Fluids 34(2):1

    Article  Google Scholar 

  37. Kelly M, Yeoh GH, Timchenko V (2015) On computational fluid dynamics study of magnetic drug targeting. J Comput Multiphase Flows 7(1):43–56

    Article  Google Scholar 

  38. Shaw S, Shit G, Tripathi D (2022) Impact of drug carrier shape, size, porosity and blood rheology on magnetic nanoparticle-based drug delivery in a microvessel. Colloids Surf A 639:128370

    Article  CAS  Google Scholar 

  39. Salem S, Tuchin VV (2020) Trapping of magnetic nanoparticles in the blood stream under the influence of a magnetic field. News of Saratov University. New episode. Series: Physics 20(1):72–79

  40. Mirzababaei S, Gorji TB, Baou M, Gorji-Bandpy M, Fatouraee N (2017) Investigation of magnetic nanoparticle targeting in a simplified model of small vessel aneurysm. J Magn Magn Mater 426:126–131

    Article  CAS  Google Scholar 

  41. Pálovics P, Németh M, Rencz M (2020) Investigation and modeling of the magnetic nanoparticle aggregation with a two-phase CFD model. Energies 13(18):4871

    Article  Google Scholar 

  42. Ndenda J, Shaw S, Njagarah J (2021) Solute dispersion of drug carrier during magnetic drug targeting for blood flow through a microvessel. J Appl Phys 130(2):1

    Article  Google Scholar 

  43. Banerjee MK, Datta A, Ganguly R (2010) Magnetic drug targeting in partly occluded blood vessels using magnetic microspheres

  44. Gómez-Pastora J, Karampelas IH, Xue X, Bringas E, Furlani EP, Ortiz I (2017) Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: theoretical analysis through computational fluid dynamics simulation. J Phys Chem C 121(13):7466–7477

    Article  Google Scholar 

  45. Bernad SI, Susan-Resiga D, Vekas L, Bernad ES (2019) Drug targeting investigation in the critical region of the arterial bypass graft. J Magn Magn Mater 475:14–23

    Article  CAS  Google Scholar 

  46. Ping G, Xin-Xia L, Ping X, Ji-Shan H (2009) Local magnetic nanoparticle delivery in microvasculature. Chin Phys Lett 26(1):018703

    Article  Google Scholar 

  47. Kayal S, Bandyopadhyay D, Mandal TK, Ramanujan RV (2011) The flow of magnetic nanoparticles in magnetic drug targeting. RSC Adv 1(2):238–246

    Article  CAS  Google Scholar 

  48. Shazri S, Idres M (2017) Numerical investigation of magnetic nanoparticles trajectories for magnetic drug targeting. In: IOP conference series: materials science and engineering, vol 184. IOP Publishing, p 012061

  49. Babinec P, Krafčík A, Babincová M, Rosenecker J (2010) Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting. Med Biolog Eng Comput 48:745–753

    Article  Google Scholar 

  50. Nacev A, Beni C, Bruno O, Shapiro B (2011) The behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323(6):651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sulttan S, Rohani S (2023) Modeling and simulation of smart magnetic self-assembled nanomicelle trajectories in an internal thoracic artery flow for breast cancer therapy. Drug Del Transl Res 13(2):675–688

    Article  CAS  Google Scholar 

  52. Sarraf SS, Saeidfar A, Navidbakhsh M, Islami SB (2021) Modeling and simulation of magnetic nanoparticles’ trajectories through a tumorous and healthy microvasculature. J Magn Magn Mater 537:168178

    Article  Google Scholar 

  53. Mashiku LR, Shaw S (2023) Unsteady nano-magnetic drug dispersion for pulsatile Darcy flow through microvessel with drug elimination phenomena. Phys Fluids 35(10):1

    Article  Google Scholar 

  54. Manshadi M, Mohammadi M, Sanati-Nezhad A (2018) Investigation of non-Newtonian blood effects on magnetic drug delivery for chemotherapy applications in an artery vessel. Anal Comput Theor Chem Lett 1:8–14

    Google Scholar 

  55. Varmazyar M, Habibi M, Amini M, Pordanjani AH, Afrand M, Vahedi SM (2020) Numerical simulation of magnetic nanoparticle-based drug delivery in presence of atherosclerotic plaques and under the effects of magnetic field. Powder Technol 366:164–174

    Article  CAS  Google Scholar 

  56. Ndenda J, Shaw S, Njagarah J (2023) Shear induced fractionalized dispersion during magnetic drug targeting in a permeable microvessel. Colloids Surf B 221:113001

    Article  CAS  Google Scholar 

  57. Gkountas AA, Polychronopoulos ND, Sofiadis GN, Karvelas EG, Spyrou LA, Sarris IE (2021) Simulation of magnetic nanoparticles crossing through a simplified blood–brain barrier model for glioblastoma multiforme treatment. Comput Methods Programs Biomed 212:106477

    Article  PubMed  Google Scholar 

  58. Gonella VC, Hanser F, Vorwerk J, Odenbach S, Baumgarten D (2021) Influence of local particle concentration gradient forces on the flow-mediated mass transport in a numerical model of magnetic drug targeting. J Magn Magn Mater 525:167490

    Article  CAS  Google Scholar 

  59. Mahmoodpour M, Goharkhah M, Ashjaee M, Najafi M (2021) A three dimensional numerical investigation on trajectories and capture of magnetic drug carrier nanoparticles in a y-shaped vessel. J Drug Del Sci Technol 61:102207

    Article  CAS  Google Scholar 

  60. Patronis A, Richardson RA, Schmieschek S, Wylie BJ, Nash RW, Coveney PV (2018) Modeling patient-specific magnetic drug targeting within the intracranial vasculature. Front Physiol 9:331

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu C, Deng S, Zou S, Chen P, Liu Y (2022) Analysis and design of a new hybrid array for magnetic drug targeting. IEEE Trans Magn 58(3):1–11

    Article  Google Scholar 

  62. Bernad SI, Totorean AF, Vekas L (2016) Particles deposition induced by the magnetic field in the coronary bypass graft model. J Magn Magn Mater 401:269–286

    Article  CAS  Google Scholar 

  63. Cherry EM, Eaton JK (2014) A comprehensive model of magnetic particle motion during magnetic drug targeting. Int J Multiph Flow 59:173–185

    Article  CAS  Google Scholar 

  64. Aryan H, Beigzadeh B, Siavashi M (2022) Euler–Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation. Comput Methods Programs Biomed 219:106778

    Article  PubMed  Google Scholar 

  65. Bose S, Datta A, Ganguly R, Banerjee M (2013) Lagrangian magnetic particle tracking through stenosed artery under pulsatile flow condition. J Nanotechnol Eng Med 4(3):031006

    Article  Google Scholar 

  66. Karvelas E, Lampropoulos N, Karakasidis T, Sarris I (2022) Blood flow and diameter effect in the navigation process of magnetic nanocarriers inside the carotid artery. Comput Methods Programs Biomed 221:106916

    Article  CAS  PubMed  Google Scholar 

  67. Abu-Hamdeh NH, Bantan RA, Aalizadeh F, Alimoradi A (2020) Controlled drug delivery using the magnetic nanoparticles in non-Newtonian blood vessels. Alex Eng J 59(6):4049–4062

    Article  Google Scholar 

  68. Hoshiar AK, Le T-A, Amin FU, Kim MO, Yoon J (2017) Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels. J Magn Magn Mater 427:181–187

    Article  CAS  Google Scholar 

  69. Gleich B, Hellwig N, Bridell H, Jurgons R, Seliger C, Alexiou C, Wolf B, Weyh T (2007) Design and evaluation of magnetic fields for nanoparticle drug targeting in cancer. IEEE Trans Nanotechnol 6(2):164–170

    Article  Google Scholar 

  70. Bhatti M, Abdelsalam SI (2021) Bio-inspired peristaltic propulsion of hybrid nanofluid flow with tantalum (Ta) and gold (Au) nanoparticles under magnetic effects. Waves Random Complex Med 2021:1–26

    Google Scholar 

  71. Boutopoulos ID, Lampropoulos DS, Bourantas GC, Miller K, Loukopoulos VC (2020) Two-phase biofluid flow model for magnetic drug targeting. Symmetry 12(7):1083

    Article  CAS  Google Scholar 

  72. Agiotis L, Theodorakos I, Samothrakitis S, Papazoglou S, Zergioti I, Raptis Y (2016) Magnetic manipulation of superparamagnetic nanoparticles in a microfluidic system for drug delivery applications. J Magn Magn Mater 401:956–964

    Article  CAS  Google Scholar 

  73. Lampropoulos N, Karvelas E, Sarris IE (2015) Computational modeling of an MRI guided drug delivery system based on magnetic nanoparticle aggregations for the navigation of paramagnetic nanocapsules. Preprint arXiv:1504.03490

  74. Reinelt M, Ahlfs J, Stein R, Alexiou C, Bänsch E, Friedrich RP, Lyer S, Neuss-Radu M, Neuß N (2023) Simulation and experimental validation of magnetic nanoparticle accumulation in a bloodstream mimicking flow system. J Magn Magn Mater 582:170984

    Article  CAS  Google Scholar 

  75. Manshadi MK, Saadat M, Mohammadi M, Shamsi M, Dejam M, Kamali R, Sanati-Nezhad A (2018) Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy. Drug Del 25(1):1963–1973

    Article  CAS  Google Scholar 

  76. Majee S, Shit G (2020) Modeling and simulation of blood flow with magnetic nanoparticles as carrier for targeted drug delivery in the stenosed artery. Eur J Mech B/Fluids 83:42–57

    Article  Google Scholar 

  77. Shojaee P, Niroomand-Oscuii H, Sefidgar M, Alinezhad L (2020) Effect of nanoparticle size, magnetic intensity, and tumor distance on the distribution of the magnetic nanoparticles in a heterogeneous tumor microenvironment. J Magn Magn Mater 498:166089

    Article  CAS  Google Scholar 

  78. Tripathi J, Vasu B, Bég OA, Gorla RSR (2021) Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery: Biomedical drug delivery simulation. Proc Inst Mech Eng [H] 235(10):1175–1196

    Article  Google Scholar 

  79. Hedayati N, Ramiar A, Larimi M (2018) Investigating the effect of external uniform magnetic field and temperature gradient on the uniformity of nanoparticles in drug delivery applications. J Mol Liq 272:301–312

    Article  CAS  Google Scholar 

  80. Calandrini S, Capodaglio G, Aulisa E (2018) Magnetic drug targeting simulations in blood flows with fluid–structure interaction. Int J Numer Methods Biomed Eng 34(4):2954

    Article  Google Scholar 

  81. Shamloo A, Ebrahimi S, Ghorbani G, Alishiri M (2022) Targeted drug delivery of magnetic microbubble for abdominal aortic aneurysm: an in silico study. Biomech Model Mech 21(2):735–753

    Article  Google Scholar 

  82. Ostrovski Y, Hofemeier P, Sznitman J (2016) Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles. Int J Nanomed 2016:3385–3395

    Google Scholar 

  83. Nikookar H, Abouali O, Eghtesad M, Sadrizadeh S, Ahmadi G (2019) Enhancing drug delivery to human trachea through oral airway using magnetophoretic steering of microsphere carriers composed of aggregated superparamagnetic nanoparticles and nanomedicine: a numerical study. J Aerosol Sci 127:63–92

    Article  CAS  Google Scholar 

  84. Manshadi MK, Saadat M, Mohammadi M, Kamali R, Shamsi M, Naseh M, Sanati-Nezhad A (2019) Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet. Drug Del 26(1):120–128

    Article  CAS  Google Scholar 

  85. Xie Y, Zeng P, Siegel RA, Wiedmann TS, Hammer BE, Longest PW (2010) Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles. Pharm Res 27:855–865

    Article  CAS  PubMed  Google Scholar 

  86. Li B, Feng Y (2022) In silico study to enhance delivery efficiency of charged nanoscale nasal spray aerosols to the olfactory region using external magnetic fields. Bioengineering 9(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pourmehran O, Rahimi-Gorji M, Gorji-Bandpy M, Gorji T (2015) Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking. J Magn Magn Mater 393:380–393

    Article  CAS  Google Scholar 

  88. Mohammadian M, Pourmehran O (2019) CFPD simulation of magnetic drug delivery to a human lung using an saw nebulizer. Biomech Model Mechanobiol 18:547–562

    Article  CAS  PubMed  Google Scholar 

  89. Kenjereš S, Tjin JL (2017) Numerical simulations of targeted delivery of magnetic drug aerosols in the human upper and central respiratory system: A validation study. R Soc Open Sci 4(12):170873

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wu C, Yan W, Chen R, Liu Y, Li G (2022) Numerical study on targeted delivery of magnetic drug particles in realistic human lung. Powder Technol 397:116984

    Article  CAS  Google Scholar 

  91. Cregg P, Murphy K, Mardinoglu A, Prina-Mello A (2010) Many particle magnetic dipole–dipole and hydrodynamic interactions in magnetizable stent assisted magnetic drug targeting. J Magn Magn Mater 322(15):2087–2094

    Article  CAS  Google Scholar 

  92. Bose S, Datta A, Ganguly R, Banerjee M (2023) Implant assisted magnetic drug targetting for non-Newtonian blood flow

  93. Vyas S, Genis V, Friedman G (2015) Computational study of kinematics of capture of magnetic particles by stent: 2-D model. IEEE Trans Magn 52(7):1–4

    Article  Google Scholar 

  94. Cregg P, Murphy K, Mardinoglu A (2012) Inclusion of interactions in mathematical modelling of implant assisted magnetic drug targeting. Appl Math Model 36(1):1–34

    Article  Google Scholar 

  95. Zhang C, Xia K, Xu K, Lin X, Jiang S, Wang C (2019) Two-phase fluid modeling of magnetic drug targeting in a permeable microvessel implanted with a toroidal permanent magnetic stent. J Fluids Eng 141(8):081301

    Article  Google Scholar 

  96. Choomphon-anomakhun N, Natenapit M (2018) 3-D MDT with spherical targets by bilinear interpolation for determining blood velocity profiles including the vessel wall effect. J Magn Magn Mater 447:101–109

    Article  CAS  Google Scholar 

  97. Hewlin RL Jr, Smith M, Kizito JP (2023) Computational assessment of unsteady flow effects on magnetic nanoparticle targeting efficiency in a magnetic stented carotid bifurcation artery. Cardiovasc Eng Technol 14(5):694–712

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janani Srree Murallidharan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamboli, N.K., Murallidharan, J.S. Numerical Studies on Magnetic Driven Targeted Drug Delivery in Human Vasculature. J Indian Inst Sci (2024). https://doi.org/10.1007/s41745-024-00428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41745-024-00428-6

Keywords

Navigation