Skip to main content
Log in

Computational Models of the Fluid Mechanics of the Stomach

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

In the last 2 decades, the interest in developing computational fluid dynamics (CFD) models of the stomach has grown steadily. This bean-shaped organ plays a key role in our digestive system by chemically and physically processing food before emptying it into the intestines. The stomach walls drive the flow of the contents to achieve mixing, grinding, and emptying of the contents. Most computational models prescribe the motion of the walls and solve for the flow field inside the lumen, but some recent models also incorporate fluid–structure interaction between the muscles and the contents. Some models employ a simplified two-dimensional or axisymmetric geometry, while others use anatomically realistic stomach shapes. The emptying mechanism employed by the model and the inclusion, or lack thereof, of the pylorus further add to the nonconformity among the different models. In this review, we summarise these different CFD models of the stomach available in the literature. A comparison between these models with regard to their complexity, validation, and specificity is presented. While there has been rapid progress in the past few years, computational models are still far behind their other physiological counterparts, such as cardiovascular flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

Similar content being viewed by others

Data availability

Data sharing is not applicable to this review article as no new data were created or analyzed.

References

  1. (2022) Estimate of Bariatric Surgery Numbers, 2011–2021. https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers

  2. Acharya S, Halder S, Kou W et al (2022) A fully resolved multiphysics model of gastric peristalsis and bolus emptying in the upper gastrointestinal tract. Comput Biol Med 143:104948. https://doi.org/10.1016/j.compbiomed.2021.104948

    Article  PubMed  Google Scholar 

  3. Afonso BB, Rosenthal R, Li KM et al (2010) Perceived barriers to bariatric surgery among morbidly obese patients. Surg Obesity Relat Dis 6(1):16–21. https://doi.org/10.1016/j.soard.2009.07.006

    Article  Google Scholar 

  4. Alokaily S, Feigl K, Tanner FX (2019) Characterization of peristaltic flow during the mixing process in a model human stomach. Phys Fluids 31(10):103105. https://doi.org/10.1063/1.5122665

    Article  CAS  Google Scholar 

  5. Bornhorst GM (2017) Gastric mixing during food digestion: mechanisms and applications. Ann Rev Food Sci Technol 8(1):523–542. https://doi.org/10.1146/annurev-food-030216-025802

    Article  Google Scholar 

  6. Bornhorst GM, Paul Singh R (2014) Gastric digestion in vivo and in vitro: how the structural aspects of food influence the digestion process. Ann Rev Food Sci Technol 5(1):111–132. https://doi.org/10.1146/annurev-food-030713-092346

    Article  CAS  Google Scholar 

  7. Brandstaeter S, Fuchs SL, Aydin RC et al (2019) Mechanics of the stomach: a review of an emerging field of biomechanics. GAMM-Mitteilungen 42(3). https://doi.org/10.1002/gamm.201900001

  8. Buchwald H, Oien DM (2013) Metabolic/bariatric surgery worldwide 2011. Obesity Surg 23(4):427–436. https://doi.org/10.1007/s11695-012-0864-0

    Article  Google Scholar 

  9. Ebara R, Ishida S, Miyagawa T et al (2023) Effects of peristaltic amplitude and frequency on gastric emptying and mixing: a simulation study. J R Soc Interface 20(198):20220780. https://doi.org/10.1098/rsif.2022.0780

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferrua M, Singh R (2010) Modeling the fluid dynamics in a human stomach to gain insight of food digestion. J Food Sci 75(7):R151–R162. https://doi.org/10.1111/j.1750-3841.2010.01748.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferrua M, Xue Z, Singh RP (2014) Dynamics of gastric contents during digestion—computational and rheological considerations. In: Food Structures, Digestion and Health. Elsevier, pp 319–360. https://doi.org/10.1016/B978-0-12-404610-8.00012-8

  12. Gosselin MC, Neufeld E, Moser H et al (2014) Development of a new generation of high-resolution anatomical models for medical device evaluation: the virtual population 3.0. Phys Med Biol 59(18):5287–5303. https://doi.org/10.1088/0031-9155/59/18/5287

  13. Imai Y, Kobayashi I, Ishida S et al (2013) Antral recirculation in the stomach during gastric mixing. Am J Physiol 304(5):G536–G542. https://doi.org/10.1152/ajpgi.00350.2012

  14. Ishida S, Miyagawa T, O’Grady G et al (2019) Quantification of gastric emptying caused by impaired coordination of pyloric closure with antral contraction: a simulation study. J R Soc Interface 16(157):20190266. https://doi.org/10.1098/rsif.2019.0266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jalabert-Malbos ML, Mishellany-Dutour A, Woda A et al (2007) Particle size distribution in the food bolus after mastication of natural foods. Food Quality Preference 18(5):803–812. https://doi.org/10.1016/j.foodqual.2007.01.010

    Article  Google Scholar 

  16. Jalleh RJ, Jones KL, Rayner CK et al (2022) Normal and disordered gastric emptying in diabetes: recent insights into (patho)physiology, management and impact on glycaemic control. Diabetologia 65(12):1981–1993. https://doi.org/10.1007/s00125-022-05796-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kozu H, Kobayashi I, Nakajima M et al (2010) Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophys 5(4):330–336. https://doi.org/10.1007/s11483-010-9183-y

    Article  Google Scholar 

  18. Kuhar S, Lee JH, Seo JH et al (2022) Effect of stomach motility on food hydrolysis and gastric emptying: Insight from computational models. Phys Fluids 34(11):111909. https://doi.org/10.1063/5.0120933

    Article  CAS  Google Scholar 

  19. Kuhar S, Seo JH, Pasricha PJ et al (2024) In silico modelling of the effect of pyloric intervention procedures on gastric flow and emptying in a stomach with gastroparesis. J R Soc Interface 21(210):20230567. https://doi.org/10.1098/rsif.2023.0567

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee JH, Kuhar S, Seo JH et al (2022) Computational modeling of drug dissolution in the human stomach: effects of posture and gastroparesis on drug bioavailability. Phys Fluids 34(8):081904. https://doi.org/10.1063/5.0096877

    Article  CAS  Google Scholar 

  21. Li C, Jin Y (2021) A CFD model for investigating the dynamics of liquid gastric contents in human-stomach induced by gastric motility. J Food Eng 296:110461. https://doi.org/10.1016/j.jfoodeng.2020.110461

    Article  CAS  Google Scholar 

  22. Li C, Jin Y (2023) Digestion of meat proteins in a human-stomach: a CFD simulation study. Innov Food Sci Emerg Technol 83:103252. https://doi.org/10.1016/j.ifset.2022.103252

    Article  CAS  Google Scholar 

  23. Li C, Xiao J, Chen XD et al (2021) Mixing and emptying of gastric contents in human-stomach: a numerical study. J Biomech 118:110293. https://doi.org/10.1016/j.jbiomech.2021.110293

    Article  PubMed  Google Scholar 

  24. Liu X, Harrison SM, Fletcher DF et al (2023) Numerical simulation of buoyancy–driven flow in a human stomach geometry: comparison of SPH and FVM models. Appl Math Modell 124:367–392. https://doi.org/10.1016/j.apm.2023.08.004

    Article  Google Scholar 

  25. Harrison SM, Cleary PW, Sinnott MD (2018) Investigating mixing and emptying for aqueous liquid content from the stomach using a coupled biomechanical-SPH model. Food Function 9(6):3202–3219. https://doi.org/10.1039/C7FO01226H

  26. Miyagawa T, Imai Y, Ishida S et al (2016) Relationship between gastric motility and liquid mixing in the stomach. Am J Physiol 311(6):G1114–G1121. https://doi.org/10.1152/ajpgi.00346.2016

  27. Morris PD, Narracott A, Von Tengg-Kobligk H et al (2016) Computational fluid dynamics modelling in cardiovascular medicine. Heart 102(1):18–28. https://doi.org/10.1136/heartjnl-2015-308044

    Article  PubMed  Google Scholar 

  28. Pal A, Indireshkumar K, Schwizer W et al (2004) Gastric flow and mixing studied using computer simulation. Proc R Soc Lond Ser B 271(1557):2587–2594. https://doi.org/10.1098/rspb.2004.2886

    Article  Google Scholar 

  29. Pal A, Brasseur JG, Abrahamsson B (2007) A stomach road or Magenstrasse for gastric emptying. J Biomech 40(6):1202–1210. https://doi.org/10.1016/j.jbiomech.2006.06.006

    Article  PubMed  Google Scholar 

  30. Palmada N, Hosseini S, Avci R et al (2023) A systematic review of computational fluid dynamics models in the stomach and small intestine. Appl Sci 13(10):6092. https://doi.org/10.3390/app13106092

    Article  CAS  Google Scholar 

  31. Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion [Ph. D. thesis]. Yeshiva University, New York

  32. Schulze K (2006) Imaging and modelling of digestion in the stomach and the duodenum. Neurogastroenterol Motility 18(3):172–183. https://doi.org/10.1111/j.1365-2982.2006.00759.x

    Article  CAS  Google Scholar 

  33. Schwizer W, Fraser R, Borovicka J et al (1996) Measurement of proximal and distal gastric motility with magnetic resonance imaging. Am J Physiol 271(1):G217–G222. https://doi.org/10.1152/ajpgi.1996.271.1.G217

  34. Seo JH, Mittal R (2022) Computational modeling of drug dissolution in the human stomach. Front Physiol 12:755997. https://doi.org/10.3389/fphys.2021.755997

    Article  PubMed  PubMed Central  Google Scholar 

  35. Singh SK (2007) Fluid flow and disintegration of food in human stomach. PhD thesis, University of California, Davis, United States – California

  36. Sommerfeld M (2017) Numerical methods for dispersed multiphase flows. In: Bodnár T, Galdi GP, Nečasová Š (eds) Particles in Flows. Springer International Publishing, Cham, pp 327–396. https://doi.org/10.1007/978-3-319-60282-0_6

  37. Trusov PV, Zaitseva NV, Kamaltdinov MR (2016) A multiphase flow in the antroduodenal portion of the gastrointestinal tract: a mathematical model. Comput Math Methods Med 2016:1–18. https://doi.org/10.1155/2016/5164029

    Article  Google Scholar 

  38. Viola F, Meschini V, Verzicco R (2020) Fluid–structure-electrophysiology interaction (FSEI) in the left-heart: a multi-way coupled computational model. Eur J Mech 79:212–232. https://doi.org/10.1016/j.euromechflu.2019.09.006

    Article  Google Scholar 

  39. Zhang H, Xu F, Zheng Z et al (2023) Gastric emptying performance of stomach-partitioning gastrojejunostomy versus conventional gastrojejunostomy for treating gastric outlet obstruction: a retrospective clinical and numerical simulation study. Front Bioeng Biotechnol 11:1109295. https://doi.org/10.3389/fbioe.2023.1109295

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was made possible by the research funding from the National Science Foundation (NSF) via Award No. CBET 2019405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Mittal.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuhar, S., Mittal, R. Computational Models of the Fluid Mechanics of the Stomach. J Indian Inst Sci (2024). https://doi.org/10.1007/s41745-024-00421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41745-024-00421-z

Keywords

Navigation