Skip to main content

Advertisement

Log in

Hyperspectral Imaging for Earth Observation: Platforms and Instruments

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Hyperspectral imaging is one of the promising remote sensing techniques. This technique records the spatial and spectral information of the object under study. Consequently, it has been gaining momentum in a number of Earth observing applications. The aim of this paper is to present the current trends of hyperspectral sensing from different platforms and instruments for various applications. For Earth observation, mobile platforms are discussed which include spaceborne, airborne, ground-based sensing, unmanned aerial system, and underwater vehicle-based. Under these different sensing platforms, hyperspectral imaging instruments are presented that have been developed by various public and private organizations in the past with some specific goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. Liu D, Zeng XA, Sun DW (2015) Recent developments and applications of hyperspectral imaging for quality evaluation of agricultural products: a review. Crit Revi Food Sci Nutr 55(12):1744–1757

    Article  Google Scholar 

  2. He HJ, Sun DW (2015) Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products. Trends Food Sci Technol 46(1):99–109

    Article  CAS  Google Scholar 

  3. Huang H, Liu L, Ngadi MO (2014) Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors 14(4):7248–7276

    Article  CAS  Google Scholar 

  4. Wang NN, Sun DW, Yang YC, Pu H, Zhu Z (2016) Recent advances in the application of hyperspectral imaging for evaluating fruit quality. Food Anal Methods 9(1):178–191

    Article  Google Scholar 

  5. Calin MA, Parasca SV, Savastru D, Manea D (2014) Hyperspectral imaging in the medical field: present and future. Appl Spectrosc Rev 49(6):435–447

    Article  Google Scholar 

  6. Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Opt 19(1):010901

    Article  Google Scholar 

  7. Randolph K, Wilson J, Tedesco L, Li L, Pascual DL, Soyeux E (2008) Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens Environ 112(11):4009–4019

    Article  Google Scholar 

  8. Brando VE, Dekker AG (2003) Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans Geosci Remote Sens 41(6):1378–1387

    Article  Google Scholar 

  9. Thenkabail PS, Lyon JG, Huete A (2016) Hyperspectral remote sensing of vegetation. CRC Press, Boca Raton

    Google Scholar 

  10. Kozoderov V, Kondranin T, Dmitriev E, Kamentsev V (2014) A system for processing hyperspectral imagery: application to detecting forest species. Int J Remote Sens 35(15):5926–5945

    Google Scholar 

  11. Jing C, Bokun Y, Runsheng W, Feng T, Yingjun Z, Dechang L, Suming Y, Wei S (2014) Regional-scale mineral mapping using aster vnir/swir data and validation of reflectance and mineral map products using airborne hyperspectral casi/sasi data. Int J Appl Earth Obs Geoinf 33:127–141

    Article  Google Scholar 

  12. Puckrin E, Turcotte CS, Gagnon MA, Bastedo J, Farley V, Chamberland M (2012) Airborne infrared hyperspectral imager for intelligence, surveillance, and reconnaissance applications. In: SPIE Defense, Security, and Sensing, p. 836,004. International Society for Optics and Photonics

  13. Cucci C, Delaney JK, Picollo M (2016) Reflectance hyperspectral imaging for investigation of works of art: old master paintings and illuminated manuscripts. Acc Chem Res 49(10):2070–2079

    Article  CAS  Google Scholar 

  14. Fischer C, Kakoulli I (2006) Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications. Stud Conserv 51(sup1):3–16

    Article  Google Scholar 

  15. Hege EK, O’Connell D, Johnson W, Basty S, Dereniak EL (2004) Hyperspectral imaging for astronomy and space surviellance. In: Optical Science and Technology, SPIE’s 48th Annual Meeting, pp. 380–391. International Society for Optics and Photonics

  16. Bradley BA (2014) Remote detection of invasive plants: a review of spectral, textural and phenological approaches. Biol Invasions 16(7):1411–1425

    Article  Google Scholar 

  17. Shaw GA, Burke HHK (2003) Spectral imaging for remote sensing. Linc Lab J 14(1):3–28

    Google Scholar 

  18. Kiran Kumar AS, Roy Chowdhury AR, Banerjee A, Dave AB, Sharma BN, Shah KJ, Murali KR, Mehta S, Joshi SR, Sarkar SS (2009) Hyper Spectral Imager for lunar mineral mapping in visible and near infrared band. Curr Sci 96(4):496–499

    Google Scholar 

  19. Kerekes JP, Cisz AP, Simmons RE (2005) A comparative evaluation of spectral quality metrics for hyperspectral imagery. In: Defense and security. International Society for optics and photonics. pp. 469–480. https://doi.org/10.1117/12.605916

  20. Börner A, Wiest L, Keller P, Reulke R, Richter R, Schaepman M, Schläpfer D (2001) Sensor: a tool for the simulation of hyperspectral remote sensing systems. ISPRS J Photogramm Remote Sens 55(5):299–312. https://doi.org/10.1016/S0924-2716(01)00022-3

    Article  Google Scholar 

  21. Guanter L, Segl K, Kaufmann H (2009) Simulation of optical remote-sensing scenes with application to the enmap hyperspectral mission. Geosci Remote Sens IEEE Trans 47(7):2340–2351. https://doi.org/10.1109/TGRS.2008.2011616

    Article  Google Scholar 

  22. Stuffler T, Kaufmann C, Hofer S, Förster K, Schreier G, Mueller A, Eckardt A, Bach H, Penne B, Benz U et al (2007) The enmap hyperspectral imageran advanced optical payload for future applications in earth observation programmes. Acta Astronaut 61(1):115–120. https://doi.org/10.1016/j.actaastro.2007.01.033

    Article  Google Scholar 

  23. Moorhead IR, Gilmore MA, Houlbrook AW, Oxford DE, Filbee D, Stroud C, Hutchings G, Kirk A (2001) Cameo-sim: a physics-based broadband scene simulation tool for assessment of camouflage, concealment, and deception methodologies. Opt Eng 40(9):1896–1905. https://doi.org/10.1117/1.1390298

    Article  Google Scholar 

  24. Cota SA, Bell JT, Boucher RH, Dutton TE, Florio CJ, Franz GA, Grycewicz TJ, Kalman LS, Keller RA, Lomheim TS et al (2010) Picasso: an end-to-end image simulation tool for space and airborne imaging systems. J Appl Remote Sens 4(1):043535. https://doi.org/10.1117/1.3457476

    Article  Google Scholar 

  25. Cota SA, Lomheim TS, Florio CJ, Harbold JM, Muto BM, Schoolar RB, Wintz DT, Keller RA (2011) Picasso: an end-to-end image simulation tool for space and airborne imaging systems ii. Extension to the thermal infrared: equations and methods. In: SPIE optical engineering+ applications, International society for optics and photonics, pp. 81,580G. https://doi.org/10.1117/12.892808

  26. Coppo P, Chiarantini L, Alparone L (2013) End-to-end image simulator for optical imaging systems: equations and simulation examples. Adv Opt Technol. DOIurl10.1155/2013/295950

  27. Van der Meer FD, Van der Werff HM, van Ruitenbeek FJ, Hecker CA, Bakker WH, Noomen MF, van der Meijde M, Carranza EJM, de Smeth JB, Woldai T (2012) Multi-and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14(1):112–128

    Article  Google Scholar 

  28. Vane G, Green RO, Chrien TG, Enmark HT, Hansen EG, Porter WM (1993) The airborne visible/infrared imaging spectrometer (aviris). Remote Sens Environ 44(2–3):127–143. https://doi.org/10.1016/0034-4257(93)90012-M

    Article  Google Scholar 

  29. Green RO, Eastwood ML, Sarture CM, Chrien TG, Aronsson M, Chippendale BJ, Faust JA, Pavri BE, Chovit CJ, Solis M et al (1998) Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (aviris). Remote Sens Environ 65(3):227–248. https://doi.org/10.1016/S0034-4257(98)00064-9

    Article  Google Scholar 

  30. Kumar KA, Thapa N, Kuriakose SA (2015) Advances in spaceborne hyperspectral imaging systems. Curr Sci 108(5):826

    Google Scholar 

  31. Bue BD, Thompson DR, Eastwood M, Green RO, Gao BC, Keymeulen D, Sarture CM, Mazer AS, Luong HH (2015) Real-time atmospheric correction of aviris-ng imagery. IEEE Trans Geosci Remote Sens 53(12):6419–6428

    Article  Google Scholar 

  32. Basedow RW, Carmer DC, Anderson ME (1995) Hydice system: implementation and performance. In: SPIE’s 1995 symposium on OE/aerospace sensing and dual use photonics, International Society for Optics and Photonics, pp. 258–267. https://doi.org/10.1117/12.210881

  33. Resmini R, Kappus M, Aldrich W, Harsanyi J, Anderson M (1997) Mineral mapping with hyperspectral digital imagery collection experiment (hydice) sensor data at cuprite, nevada, usa. Int J Remote Sens 18(7):1553–1570

    Article  Google Scholar 

  34. Nischan ML, Kerekes JP, Baum JE, Basedow RW (1999) Analysis of hydice noise characteristics and their impact on subpixel object detection. In: SPIE’s International Symposium on optical science, engineering, and instrumentation, International Society for Optics and Photonics , pp. 112–123

  35. Babey SK, Anger CD (1993) Compact airborne spectrographic imager (casi): a progress review. In: Optical Engineering and Photonics in Aerospace Sensing, International society for optics and photonics, pp. 152–163. https://doi.org/10.1117/12.157052

  36. Cocks T, Jenssen R, Stewart A, Wilson I, Shields T (1998) The hymaptm airborne hyperspectral sensor: The system, calibration and performance. European Assoc Remote Sensing Laboratories, Versailles

    Google Scholar 

  37. Kruse F, Boardman J, Lefkoff A, Young J, Kierein-Young K, Cocks T, Jensen R, Cocks P (2000) Hymap: an australian hyperspectral sensor solving global problems-results from USA hymap data acquisitions. In: Proceeding of the 10th Australasian Remote Sensing and Photogrammetry Conference, pp. 18–23

  38. Chang SH, Westfield MJ, Lehmann F, Oertel D, Richter R (1993) 79-channel airborne imaging spectrometer. In: Optical engineering and photonics in aerospace sensing, International Society for Optics and Photonics, pp. 164–172. https://doi.org/10.1117/12.157053

  39. Huegel FG (1987) Advanced solidstate array spectroradiometer: sensor and calibration improvements. In: 31st Annual technical symposium, International Society for Optics and Photonics, pp. 12–15. https://doi.org/10.1117/12.942278

  40. Voelker MA, Resmini RG, Mooradian GC, McCord TB, Warren CP, Fene MW, Coyle CC, Anderson R (1995) Advanced airborne hyperspectral imaging system (aahis): an imaging spectrometer for maritime applications. In: SPIE’s 1995 Symposium on OE/Aerospace sensing and dual use photonics, International Society for Optics and Photonics, pp. 357–367. https://doi.org/10.1117/12.210891

  41. Pearlman JS, Barry PS, Segal CC, Shepanski J, Beiso D, Carman SL (2003) Hyperion, a space-based imaging spectrometer. Geosci Remote Sens IEEE Trans 41(6):1160–1173. https://doi.org/10.1109/TGRS.2003.815018

    Article  Google Scholar 

  42. Van Mol B, Ruddick K (2004) The compact high resolution imaging spectrometer (chris): the future of hyperspectral satellite sensors. imagery of oostende coastal and inland waters. In: Proceedings of the Airborne Imaging Spectroscopy workshop, Brugge

  43. Cutter MA, Lobb DR, Cockshott RA (2000) Compact high resolution imaging spectrometer (chris). Acta Astronaut 46(2):263–268. https://doi.org/10.1016/S0094-5765(99)00207-6

    Article  Google Scholar 

  44. Kumar A, Saha A, Dadhwal V (2010) Some issues related with sub-pixel classification using hysi data from ims-1 satellite. J Indian Soc Remote Sens 38(2):203–210. https://doi.org/10.1007/s12524-010-0027-5

    Article  Google Scholar 

  45. Kuriakose SA, Subrahmanyam D, Sarkar S, Patel V, Mathur N (2006) Design and development of the multispectral payload for twsat mission. In: Asia-Pacific remote sensing symposium, International society for optics and photonics, pp. 640,516. https://doi.org/10.1117/12.693863

  46. Yarbrough S, Caudill TR, Kouba ET, Osweiler V, Arnold J, Quarles R, Russell J, Otten III LJ, Jones BA, Edwards A et al (2002) Mightysat ii. 1 hyperspectral imager: summary of on-orbit performance. In: International symposium on optical science and technology, International Society for Optics and Photonics , pp. 186–197. https://doi.org/10.1117/12.453339

  47. Roberts E, Huntington J, Denize R (1997) The australian resource information and environment satellite (aries), phase a study

  48. Gu Y, Gao M, Zhao G, Liu Y, Jin Z (2014) Science researches of Chinese manned space flight. Chin J Space Sci 34(5):518–524

    Google Scholar 

  49. Li X, Wu T, Liu K, Li Y, Zhang L (2016) Evaluation of the Chinese fine spatial resolution hyperspectral satellite tiangong-1 in urban land-cover classification. Remote Sens 8(5):438

    Article  Google Scholar 

  50. Zhang B, Chen Z, Li J, Gao L (2009) Image quality evaluation on chinese first earth observation hyperspectral satellite. In: Geoscience and remote sensing symposium, 2009 IEEE International, IGARSS 2009, vol. 1, pp. I–188. https://doi.org/10.1109/IGARSS.2009.5416885

  51. Lucke RL, Corson M, McGlothlin NR, Butcher SD, Wood DL, Korwan DR, Li RR, Snyder WA, Davis CO, Chen DT (2011) Hyperspectral imager for the coastal ocean: instrument description and first images. Appl Opt 50(11):1501–1516. https://doi.org/10.1364/AO.50.001501

    Article  Google Scholar 

  52. Corson MR, Korwan DR, Lucke RL, Snyder WA, Davis CO (2008) The hyperspectral imager for the coastal ocean (hico) on the international space station. In: Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE International, vol. 4, pp. IV–101. IEEE. https://doi.org/10.1109/IGARSS.2008.4779666

  53. Zhang C, Kovacs JM (2012) The application of small unmanned aerial systems for precision agriculture: a review. Precis Agric 13(6):693–712. https://doi.org/10.1007/s11119-012-9274-5

    Article  CAS  Google Scholar 

  54. Suomalainen J, Anders N, Iqbal S, Roerink G, Franke J, Wenting P, Hünniger D, Bartholomeus H, Becker R, Kooistra L (2014) A lightweight hyperspectral mapping system and photogrammetric processing chain for unmanned aerial vehicles. Remote Sens 6(11):11013–11030

    Article  Google Scholar 

  55. Zarco-Tejada PJ, González-Dugo V, Berni JA (2012) Fluorescence, temperature and narrow-band indices acquired from a uav platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens Environ 117:322–337

    Article  Google Scholar 

  56. Wallace L, Lucieer A, Watson C, Turner D (2012) Development of a UAV-lidar system with application to forest inventory. Remote Sens 4(6):1519–1543

    Article  Google Scholar 

  57. Berni JA, Zarco-Tejada PJ, Suárez L, Fereres E (2009) Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans Geosci Remote Sens 47(3):722–738

    Article  Google Scholar 

  58. Turner D, Lucieer A, Watson C (2011) Development of an unmanned aerial vehicle (UAV) for hyper resolution vineyard mapping based on visible, multispectral, and thermal imagery. In: Proceedings of 34th International symposium on remote sensing of environment, p. 4

  59. Baluja J, Diago MP, Balda P, Zorer R, Meggio F, Morales F, Tardaguila J (2012) Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig Sci 30(6):511–522

    Article  Google Scholar 

  60. Gonzalez-Dugo V, Zarco-Tejada P, Nicolás E, Nortes PA, Alarcón JJ, Intrigliolo DS, Fereres E (2013) Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis Agric 14(6):660–678

    Article  Google Scholar 

  61. Ahmad A, Samad AM (2010) Aerial mapping using high resolution digital camera and unmanned aerial vehicle for geographical information system. In: Signal Processing and Its Applications (CSPA), 2010 6th International Colloquium on, pp. 1–6. IEEE

  62. Sankaran S, Khot LR, Espinoza CZ, Jarolmasjed S, Sathuvalli VR, Vandemark GJ, Miklas PN, Carter AH, Pumphrey MO, Knowles NR et al (2015) Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review. Eur J Agronomy 70:112–123. https://doi.org/10.1016/j.eja.2015.07.004

    Article  Google Scholar 

  63. Swain KC, Jayasuriya HP, Salokhe VM (2007) Suitability of low-altitude remote sensing images for estimating nitrogen treatment variations in rice cropping for precision agriculture adoption. J Appl Remote Sens 1(1):013547. https://doi.org/10.1117/1.2824287

    Article  Google Scholar 

  64. Primicerio J, Di Gennaro SF, Fiorillo E, Genesio L, Lugato E, Matese A, Vaccari FP (2012) A flexible unmanned aerial vehicle for precision agriculture. Precis Agric 13(4):517–523. https://doi.org/10.1007/s11119-012-9257-6

    Article  Google Scholar 

  65. Hadley BC, Garcia-Quijano M, Jensen JR, Tullis JA (2005) Empirical versus model-based atmospheric correction of digital airborne imaging spectrometer hyperspectral data. Geocarto Int 20(4):21–28. https://doi.org/10.1080/10106040508542360

    Article  Google Scholar 

  66. Glenn NF, Mundt JT, Weber KT, Prather TS, Lass LW, Pettingill J (2005) Hyperspectral data processing for repeat detection of small infestations of leafy spurge. Remote Sens Environ 95(3):399–412. https://doi.org/10.1016/j.rse.2005.01.003

    Article  Google Scholar 

  67. Crouvi O, Ben-Dor E, Beyth M, Avigad D, Amit R (2006) Quantitative mapping of arid alluvial fan surfaces using field spectrometer and hyperspectral remote sensing. Remote Sens Environ 104(1):103–117. https://doi.org/10.1016/j.rse.2006.05.004

    Article  Google Scholar 

  68. Gladwell D, Lett R, Lawrence P (1983) Application of reflectance spectrometry to mineral exploration using portable radiometers. Econ Geol 78(4):699–710. https://doi.org/10.2113/gsecongeo.78.4.699

    Article  CAS  Google Scholar 

  69. Shibayama M, Takahashi W, Morinaga S, Akiyama T (1993) Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer. Remote Sens Environ 45(2):117–126. https://doi.org/10.1016/0034-4257(93)90036-W

    Article  Google Scholar 

  70. Fortin G, Thériault JM, Lacasse P (2013) LWIR polarization sensing: investigation of liquids and solids with moddifs. In: SPIE optical engineering+ applications, International society for optics and photonics, pp. 88,730H

  71. Montembeault Y, Lagueux P, Farley V, Villemaire A, Gross KC (2010) Hyper-cam: hyperspectral ir imaging applications in defence innovative research. In: Hyperspectral image and signal processing: evolution in remote sensing (WHISPERS), 2010 2nd Workshop on, pp. 1–4. IEEE

  72. Reyniers M, Vrindts E (2006) Measuring wheat nitrogen status from space and ground-based platform. Int J Remote Sens 27(3):549–567. https://doi.org/10.1080/01431160500117907

    Article  Google Scholar 

  73. Abd-Elrahman A, Pande-Chhetri R, Vallad G (2011) Design and development of a multi-purpose low-cost hyperspectral imaging system. Remote Sens 3(3):570–586. https://doi.org/10.3390/rs3030570

    Article  Google Scholar 

  74. Atzberger C (2013) Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens 5(2):949–981

    Article  Google Scholar 

  75. Lelong CC, Pinet PC, Poilvé H (1998) Hyperspectral imaging and stress mapping in agriculture: a case study on wheat in beauce (france). Remote Sens Environ 66(2):179–191

    Article  Google Scholar 

  76. Cloutis E (1996) Review article hyperspectral geological remote sensing: evaluation of analytical techniques. Int J Remote Sens 17(12):2215–2242

    Article  Google Scholar 

  77. Holmgren P, Thuresson T (1998) Satellite remote sensing for forestry planning: a review. Scand J For Res 13(1–4):90–110

    Article  Google Scholar 

  78. Coppin PR, Bauer ME (1996) Digital change detection in forest ecosystems with remote sensing imagery. Remote Sens Rev 13(3–4):207–234

    Article  Google Scholar 

  79. Kucukkaya AG (2004) Photogrammetry and remote sensing in archeology. J Quant Spectrosc Radiat Transf 88(1):83–88

    Article  CAS  Google Scholar 

  80. Saturno W, Sever TL, Irwin DE, Howell BF, Garrison TG (2006) Putting us on the map: remote sensing investigation of the ancient maya landscape. In: Remote sensing in archaeology, Springer, pp. 137–160

  81. Barrett N, Seiler J, Anderson T, Williams S, Nichol S, Hill SN (2010) Autonomous underwater vehicle (AUV) for mapping marine biodiversity in coastal and shelf waters: implications for marine management. In: OCEANS 2010 IEEE-Sydney, IEEE, pp. 1–6

  82. Ludvigsen M, Thorsnes T, Hansen RE, Johnsen G, Lågstad PA, Ødegård Ø, Candeloro M, Nornes SM, Malmquist C et al (2015) Underwater vehicles for environmental management in coastal areas. In: OCEANS 2015-Genova, IEEE, pp. 1–6

  83. Dierssen HM, Zimmerman RC, Leathers RA, Downes TV, Davis CO (2003) Ocean color remote sensing of seagrass and bathymetry in the bahamas banks by high-resolution airborne imagery. Limnol Oceanogr 48(1part2):444–455

    Article  Google Scholar 

  84. Mobley CD, Sundman LK, Davis CO, Bowles JH, Downes TV, Leathers RA, Montes MJ, Bissett WP, Kohler DD, Reid RP et al (2005) Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Appl Opt 44(17):3576–3592

    Article  Google Scholar 

  85. Volent Z, Johnsen G, Sigernes F (2007) Kelp forest mapping by use of airborne hyperspectral imager. J Appl Remote Sens 1(1):011503

    Article  Google Scholar 

  86. Johnsen G, Ludvigsen M, Sørensen A, Aas LMS (2016) The use of underwater hyperspectral imaging deployed on remotely operated vehicles-methods and applications. IFAC PapersOnLine 49(23):476–481

    Article  Google Scholar 

  87. Johnsen G, Volent Z, Dierssen H, Pettersen R, Ardelan M, Soreide F, Fearns P, Ludvigsen M, Moline M (2013) Underwater hyperspectral imagery to create biogeochemical maps of seafloor properties. In: J. Watson, O. Zielinski (eds) Subsea Optics and Imaging, Woodhead Publishing Series in Electronic and Optical Materials, pp. 508 – 540e. Woodhead Publishing. https://doi.org/10.1533/9780857093523.3.508

    Chapter  Google Scholar 

  88. Ødegård Ø, Sørensen AJ, Hansen RE, Ludvigsen M (2016) A new method for underwater archaeological surveying using sensors and unmanned platforms. IFAC-PapersOnLine 49(23):486–493

    Article  Google Scholar 

  89. Dumke I, Nornes SM, Purser A, Marcon Y, Ludvigsen M, Ellefmo SL, Johnsen G, Søreide F (2018) First hyperspectral imaging survey of the deep seafloor: high-resolution mapping of manganese nodules. Remote Sens Environ 209:19–30

    Article  Google Scholar 

  90. McLeod D, Jacobson J, Hardy M, Embry C (2013) Autonomous inspection using an underwater 3d lidar. In: Oceans-San Diego, 2013, pp. 1–8. IEEE

  91. Ozog P, Troni G, Kaess M, Eustice RM, Johnson-Roberson M (2015) Building 3d mosaics from an autonomous underwater vehicle, doppler velocity log, and 2d imaging sonar. In: Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 1137–1143. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Lodhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodhi, V., Chakravarty, D. & Mitra, P. Hyperspectral Imaging for Earth Observation: Platforms and Instruments. J Indian Inst Sci 98, 429–443 (2018). https://doi.org/10.1007/s41745-018-0070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-018-0070-8

Keywords

Navigation