Skip to main content

Advertisement

Log in

Remote detection of invasive plants: a review of spectral, textural and phenological approaches

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Remote sensing image analysis is increasingly being used as a tool for mapping invasive plant species. Resulting distribution maps can be used to target management of early infestations and to model future invasion risk. Remote identification of invasive plants based on differences in spectral signatures is the most common approach, typically using hyperspectral data. But several studies have found that textural and phenological differences are also effective approaches for identifying invasive plants. I review examples of remote detection of invasive plants based on spectral, textural and phenological analysis and highlight circumstances where the different approaches are likely to be most effective. I also review sources and availability of remotely sensed data that could be used for mapping and suggest field data collection approaches that would support the analysis of remotely sensed data. Remote mapping of biological invasions remains a relatively specialized research topic, but the distinct cover, morphology and/or seasonality of many invaded versus native ecosystems suggests that more species could be detected remotely. Remote sensing can sometimes support early detection and rapid response directly, however, accurately detecting small, nascent populations is a challenge. However, even maps of heavily infested areas can provide a valuable tool for risk assessment by increasing knowledge about temporal and spatial patterns and predictors of invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albright TP, Moorhouse T, McNabb T (2004) The rise and fall of water hyacinth in Lake Victoria and the Kagera River Basin, 1989–2001. J Aquat Plant Manag 42:73–84

    Google Scholar 

  • Andrew ME, Ustin SL (2006) Spectral and physiological uniqueness of perennial pepperweed (Lepidium latifolium). Weed Sci 54(6):1051–1062

    Article  CAS  Google Scholar 

  • Andrew ME, Ustin SL (2008) The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sens Environ 112(12):4301–4317. doi:10.1016/j.rse.2008.07.016

    Article  Google Scholar 

  • Andrew ME, Ustin SL (2009) Habitat suitability modelling of an invasive plant with advanced remote sensing data. Divers Distrib 15(4):627–640. doi:10.1111/j.1472-4642.2009.00568.x

  • Andrew ME, Ustin SL (2010) The effects of temporally variable dispersal and landscape structure on invasive species spread. Ecol Appl 20(3):593–608

    Article  PubMed  Google Scholar 

  • Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. Proc Natl Acad Sci USA 102(12):4383–4386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Asner GP, Jones MO, Martin RE, Knapp DE, Hughes RF (2008) Remote sensing of native and invasive species in Hawaiian forests. Remote Sens Environ 112(5):1912–1926. doi:10.1016/j.rse.2007.02.043

    Article  Google Scholar 

  • Balch JK, Bradley BA, D’Antonio CM, Gomez-Dans J (2013) Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob Change Biol 19:173–183. doi:10.1111/gcb.12046

    Article  Google Scholar 

  • Becker RH, Zmijewski KA, Crail T (2013) Seeing the forest for the invasives: mapping buckthorn in the Oak Openings. Biol Invasions 15(2):315–326. doi:10.1007/s10530-012-0288-8

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65(1):2–16. doi:10.1016/j.isprsjprs.2009.06.004

    Article  Google Scholar 

  • Blumenthal D, Booth DT, Cox SE, Ferrier CE (2007) Large-scale aerial images capture details of invasive plant populations. Rangel Ecol Manag 60(5):523–528. doi:10.2111/1551-5028(2007)60[523:laicdo]2.0.co;2

    Google Scholar 

  • Boers AM, Zedler JB (2008) Stabilized water levels and Typha invasiveness. Wetlands 28(3):676–685

    Article  Google Scholar 

  • Bonneau LR, Shields KS, Civco DL (1999) Using satellite images to classify and analyze the health of hemlock forests infested by the hemlock woolly adelgid. Biol Invasions 1(2–3):255–267

    Article  Google Scholar 

  • Bradley BA (2009) Regional analysis of impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Glob Change Biol 15(1):196–208

    Article  Google Scholar 

  • Bradley BA (2013) Distribution models of invasive plants over-estimate potential impact. Biol Invasions 15(7):1417–1429. doi:10.1007/s10530-012-0380-0

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2005) Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin. Remote Sens Environ 94:204–213

    Article  Google Scholar 

  • Bradley BA, Mustard JF (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16(3):1132–1147

    Article  PubMed  Google Scholar 

  • Carter GA, Lucas KL, Blossom GA, Lassitter CL, Holiday DM, Mooneyhan DS, Fastring DR, Holcombe TR, Griffith JA (2009) Remote sensing and mapping of tamarisk along the Colorado river, USA: a comparative use of summer-acquired Hyperion, Thematic Mapper and QuickBird data. Remote Sens 1(3):318–329

    Article  Google Scholar 

  • Cavalli RM, Laneve G, Fusilli L, Pignatti S, Santini F (2009) Remote sensing water observation for supporting Lake Victoria weed management. J Environ Manag 90(7):2199–2211. doi:10.1016/j.jenvman.2007.07.036

    Article  Google Scholar 

  • Clinton NE, Potter C, Crabtree B, Genovese V, Gross P, Gong P (2010) Remote sensing-based time-series analysis of cheatgrass (L.) phenology. J Environ Qual 39(3):955–963

    Article  CAS  PubMed  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88(3):528–534

    Article  Google Scholar 

  • EDDMapS, Early Detection and Distribution Mapping System (2013) The University of Georgia—Center for Invasive Species and Ecosystem Health. Accessed 20 June 2013

  • Evangelista P, Stohlgren T, Morisette J, Kumar S (2009) Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data. Remote Sens 1(3):519–533

    Article  Google Scholar 

  • Everitt JH, Yang C (2007) Using Quickbird Satellite imagery to distinguish two aquatic weeds in south texas. J Aquat Plant Manag 45:25–31

    Google Scholar 

  • Everitt JH, Anderson GL, Escobar DE, Davis MR, Spencer NR, Andrascik RJ (1995) Use of remote sensing for detecting and mapping leafy spurge (Euphorbia esula). Weed Technol 9(3):599–609

    Google Scholar 

  • Fletcher RS, Everitt JH, Elder HS (2010) Evaluating airborne multispectral digital video to differentiate Giant Salvinia from other features in Northeast Texas. Remote Sens 2(10):2413–2423

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83(1–2):287–302

    Article  Google Scholar 

  • Fuller DO (2005) Remote detection of invasive Melaleuca trees (Melaleuca quinquenervia) in South Florida with multispectral IKONOS imagery. Int J Remote Sens 26(5):1057–1063. doi:10.1080/01430060512331314119

    Article  Google Scholar 

  • Gao F, Morisette JT, Wolfe RE, Ederer G, Pedelty J, Masuoka E, Myneni R, Tan B, Nightingale J (2008) An algorithm to produce temporally and spatially continuous MODIS-LAI time series. Geosci Remote Sens Lett, IEEE 5(1):60–64

    Article  Google Scholar 

  • Gavier-Pizarro GI, Kuemmerle T, Hoyos LE, Stewart SI, Huebner CD, Keuler NS, Radeloff VC (2012) Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and support vector machines in Córdoba, Argentina. Remote Sens Environ 122:134–145. doi:10.1016/j.rse.2011.09.023

    Article  Google Scholar 

  • GBIF (2013) Global biodiversity information facility (GBIF) data portal. http://www.gbif.org/. Accessed Aug 2013

  • Gil A, Lobo A, Abadi M, Silva L, Calado H (2013) Mapping invasive woody plants in Azores Protected Areas by using very high-resolution multispectral imagery. Eur J Remote Sens 46:289–304

    Article  Google Scholar 

  • Glenn NF, Mundt JT, Weber KT, Prather TS, Lass LW, Pettingill J (2005) Hyperspectral data processing for repeat detection of small infestations of leafy spurge. Remote Sens Environ 95(3):399–412

    Article  Google Scholar 

  • Hamada Y, Stow DA, Coulter LL, Jafolla JC, Hendricks LW (2007) Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sens Environ 109(2):237–248

    Article  Google Scholar 

  • He KS, Rocchini D, Neteler M, Nagendra H (2011) Benefits of hyperspectral remote sensing for tracking plant invasions. Divers Distrib 17(3):381–392. doi:10.1111/j.1472-4642.2011.00761.x

    Article  Google Scholar 

  • Herbold B, Moyle PB (1986) Introduced species and vacant niches. Am Nat 128(5):751–760. doi:10.2307/2461954

    Article  Google Scholar 

  • Hestir EL, Khanna S, Andrew ME, Santos MJ, Viers JH, Greenberg JA, Rajapakse SS, Ustin SL (2008) Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sens Environ 112(11):4034–4047

    Article  Google Scholar 

  • Hoyos LE, Gavier-Pizarro GI, Kuemmerle T, Bucher EH, Radeloff VC, Tecco PA (2010) Invasion of glossy privet (Ligustrum lucidum) and native forest loss in the Sierras Chicas of Córdoba, Argentina. Biol Invasions 12(9):3261–3275

    Article  Google Scholar 

  • Huang CY, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9(6):4869–4889. doi:10.3390/s90604869

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang CY, Geiger EL (2008) Climate anomalies provide opportunities for large-scale mapping of non-native plant abundance in desert grasslands. Divers Distrib 14(5):875–884. doi:10.1111/j.1472-4642.2008.00500.x

    Article  Google Scholar 

  • Kimothi M, Anitha D, Vasistha H, Soni P, Chandola S (2010) Remote sensing to map the invasive weed. Lantana camara in forests. Trop Ecol 51(1):67–74

    Google Scholar 

  • Koltunov A, Ustin SL, Asner GP, Fung I (2009) Selective logging changes forest phenology in the Brazilian Amazon: evidence from MODIS image time series analysis. Remote Sens Environ 113(11):2431–2440

    Article  Google Scholar 

  • Laba M, Blair B, Downs R, Monger B, Philpot W, Smith S, Sullivan P, Baveye PC (2010) Use of textural measurements to map invasive wetland plants in the Hudson River National Estuarine Research Reserve with IKONOS satellite imagery. Remote Sens Environ 114(4):876–886. doi:10.1016/j.rse.2009.12.002

    Article  Google Scholar 

  • Lass LW, Thill DC, Shafii B, Prather TS (2002) Detecting spotted knapweed (Centaurea maculosa) with hyperspectral remote sensing technology. Weed Technol 16(2):426–432

    Article  Google Scholar 

  • Lass LW, Prather TS, Glenn NF, Weber KT, Mundt JT, Pettingill J (2005) A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a hyperspectral sensor. Weed Sci 53(2):242–251. doi:10.1614/ws-04-044r2

    Article  CAS  Google Scholar 

  • Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar remote sensing for ecosystem studies: lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. Bioscience 52(1):19–30

    Article  Google Scholar 

  • Lishawa SC, Treering DJ, Vail LM, McKenna O, Grimm EC, Tuchman NC (2013) Reconstructing plant invasions using historical aerial imagery and pollen core analysis: typha in the Laurentian Great Lakes. Divers Distrib 19(1):14–28. doi:10.1111/j.1472-4642.2012.00929.x

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21(6–7):1303–1330

    Article  Google Scholar 

  • Lu M-L, Huang J-Y, Chung Y-L, Huang C-Y (2013) Modelling the invasion of a Central American Mimosoid tree species (Leucaena leucocephala) in a tropical coastal region of Taiwan. Remote Sens Lett 4(5):485–493. doi:10.1080/2150704x.2012.755274

    Article  Google Scholar 

  • Marvin DC, Bradley BA, Wilcove DS (2009) A novel, web-based ecosystem mapping tool using expert opinion. Nat Areas J 29(3):281–292

    Article  Google Scholar 

  • Mast JN, Veblen TT, Hodgson ME (1997) Tree invasion within a pine/grassland ecotone: an approach with historic aerial photography and GIS modeling. For Ecol Manag 93(3):181–194. doi:10.1016/S0378-1127(96)03954-0

    Article  Google Scholar 

  • McCormick CM (1999) Mapping exotic vegetation in the Everglades from large-scale aerial photographs. Photogramm Eng Remote Sens 65(2):179–184

    Google Scholar 

  • Meentemeyer RK, Rank NE, Shoemaker DA, Oneal CB, Wickland AC, Frangioso KM, Rizzo DM (2008) Impact of sudden oak death on tree mortality in the Big Sur ecoregion of California. Biol Invasions 10(8):1243–1255. doi:10.1007/s10530-007-9199-5

    Article  Google Scholar 

  • Miao X, Gong P, Swope S, Pu RL, Carruthers R, Anderson GL, Heaton JS, Tracy CR (2006) Estimation of yellow starthistle abundance through CASI-2 hyperspectral imagery using linear spectral mixture models. Remote Sens Environ 101(3):329–341

    Article  Google Scholar 

  • Mirik M, Ansley RJ, Steddom K, Jones D, Rush C, Michels G, Elliott N (2013) Remote distinction of a noxious weed (Musk Thistle: Carduus nutans) using airborne hyperspectral imagery and the support vector machine classifier. Remote Sens 5(2):612–630

    Article  Google Scholar 

  • Mosher ES, Silander JA, Latimer AM (2009) The role of land-use history in major invasions by woody plant species in the northeastern North American landscape. Biol Invasions 11(10):2317–2328. doi:10.1007/s10530-008-9418-8

    Article  Google Scholar 

  • Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114(4):358–371. doi:10.1016/j.biosystemseng.2012.08.009

    Article  Google Scholar 

  • Müllerová J, Pyšek P, Jarošík V, Pergl J (2005) Aerial photographs as a tool for assessing the regional dynamics of the invasive plant species Heracleum mantegazzianum. J Appl Ecol 42(6):1042–1053

    Article  Google Scholar 

  • Noujdina NV, Ustin SL (2008) Mapping downy brome (Bromus tectorum) using multidate AVIRIS data. Weed Sci 56:173–179

    Google Scholar 

  • Parker Williams A, Hunt ER Jr (2002) Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering. Remote Sens Environ 82(2):446–456

    Article  Google Scholar 

  • Pearlstine L, Portier KM, Smith SE (2005) Textural discrimination of an invasive plant, Schinus terebinthifolius, from low altitude aerial digital imagery. Photogramm Eng Remote Sens 71(3):289–298

    Article  Google Scholar 

  • Peterson EB (2005) Estimating cover of an invasive grass (Bromus tectorum) using tobit regression and phenology derived from two dates of Landsat ETM plus data. Int J Remote Sens 26(12):2491–2507

    Article  Google Scholar 

  • Petty AM, Setterfield SA, Ferdinands KB, Barrow P (2012) Inferring habitat suitability and spread patterns from large-scale distributions of an exotic invasive pasture grass in north Australia. J Appl Ecol 49(3):742–752

    Google Scholar 

  • Resasco J, Hale AN, Henry MC, Gorchov DL (2007) Detecting an invasive shrub in a deciduous forest understory using late-fall Landsat sensor imagery. Int J Remote Sens 28(16):3739–3745

    Article  Google Scholar 

  • Schneider LC, Fernando DN (2010) An untidy cover: invasion of bracken fern in the shifting cultivation systems of Southern Yucatán, Mexico. Biotropica 42(1):41–48. doi:10.1111/j.1744-7429.2009.00569.x

    Article  Google Scholar 

  • Shaw DR (2005) Translation of remote sensing data into weed management decisions. Weed Sci 53(2):264–273

    Article  CAS  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17(4):170–176

    Article  Google Scholar 

  • Shouse M, Liang L, Fei S (2013) Identification of understory invasive exotic plants with remote sensing in urban forests. Int J Appl Earth Obs Geoinf 21:525–534. doi:10.1016/j.jag.2012.07.010

    Article  Google Scholar 

  • Singh N, Glenn NF (2009) Multitemporal spectral analysis for cheatgrass (Bromus tectorum) classification. Int J Remote Sens 30(13):3441–3462

    Article  Google Scholar 

  • Somers B, Asner GP (2013) Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens Environ 136:14–27. doi:10.1016/j.rse.2013.04.006

    Article  Google Scholar 

  • Somodi I, Čarni A, Ribeiro D, Podobnikar T (2012) Recognition of the invasive species Robinia pseudacacia from combined remote sensing and GIS sources. Biol Conserv 150(1):59–67. doi:10.1016/j.biocon.2012.02.014

    Article  Google Scholar 

  • Tan B, Morisette JT, Wolfe RE, Gao F, Ederer GA, Nightingale J, Pedelty JA (2010) An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE J Sel Top Appl Earth Observ Remote Sens 4(2):361–371. doi:10.1109/jstars.2010.2075916

    Article  Google Scholar 

  • Taylor SL, Hill RA, Edwards C (2013) Characterising invasive non-native Rhododendron ponticum spectra signatures with spectroradiometry in the laboratory and field: potential for remote mapping. ISPRS J Photogramm Remote Sens 81:70–81. doi:10.1016/j.isprsjprs.2013.04.003

    Article  Google Scholar 

  • Thorp K, Tian L (2004) A review on remote sensing of weeds in agriculture. Precis Agric 5(5):477–508

    Article  Google Scholar 

  • Townsend PA, Walsh SJ (2001) Remote sensing of forested wetlands: application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA. Plant Ecol 157(2):129–149

    Article  Google Scholar 

  • Tsai F, Chou MJ (2006) Texture augmented analysis of high resolution satellite imagery in detecting invasive plant species. J Chin Inst Eng 29(4):581–592. doi:10.1080/02533839.2006.9671155

    Article  Google Scholar 

  • Tuanmu M-N, Viña A, Bearer S, Xu W, Ouyang Z, Zhang H, Liu J (2010) Mapping understory vegetation using phenological characteristics derived from remotely sensed data. Remote Sens Environ 114(8):1833–1844. doi:10.1016/j.rse.2010.03.008

    Article  Google Scholar 

  • Tuceryan M, Jain AK (1998) Texture analysis. In: Chen CH, Pau LF, Wang SPS (eds) The handbook of pattern recognition and computer vision. World Scientific, Singapore, pp 207–248

    Google Scholar 

  • Underwood E, Ustin S, DiPietro D (2003) Mapping nonnative plants using hyperspectral imagery. Remote Sens Environ 86(2):150–161

    Article  Google Scholar 

  • Underwood E, Ustin S, Pauchard A, Maheu-Giroux M (2007) Trends in invasive alien species. In: Strand H, Hoft R, Strittholt J et al (eds) Sourcebook on remote sensing and biodiversity indicators, vol CBD Technical Series No. 32. Secretariat of the Convention on Biological Diversity, Montreal

  • Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landsc Ecol 26(4):461–472

    Article  Google Scholar 

  • Weisberg PJ, Lingua E, Pillai RB (2007) Spatial patterns of pinyon-juniper woodland expansion in central Nevada. Rangel Ecol Manag 60(2):115–124

    Article  Google Scholar 

  • Westbrooks RG (2004) New approaches for early detection and rapid response to invasive plants in the United States 1. Weed Technol 18(Sp 1):1468–1471

    Article  Google Scholar 

  • Wilfong BN, Gorchov DL, Henry MC (2009) Detecting an invasive shrub in deciduous forest understories using remote sensing. Weed Sci 57(5):512–520. doi:10.1614/ws-09-012.1

    Article  CAS  Google Scholar 

  • Willis CG, Ruhfel BR, Primack RB, Miller-Rushing AJ, Losos JB, Davis CC (2010) Favorable climate change response explains non-native species’ success in thoreau’s woods. PLoS One 5(1):e8878. doi:10.1371/journal.pone.0008878

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolkovich EM, Cleland EE (2011) The phenology of plant invasions: a community ecology perspective. Front Ecol Environ 9(5):287–294. doi:10.1890/100033

    Article  Google Scholar 

  • Wolmarans R, Robertson MP, van Rensburg BJ (2010) Predicting invasive alien plant distributions: how geographical bias in occurrence records influences model performance. J Biogeogr 37(9):1797–1810. doi:10.1111/j.1365-2699.2010.02325.x

    Article  Google Scholar 

  • Wu YG, Rutchey K, Wang NM, Godin J (2006) The spatial pattern and dispersion of Lygodium microphyllum in the Everglades wetland ecosystem. Biol Invasions 8(7):1483–1493. doi:10.1007/s10530-005-5840-3

    Article  Google Scholar 

  • Wulder MA, Dymond CC, White JC, Leckie DG, Carroll AL (2006) Surveying mountain pine beetle damage of forests: a review of remote sensing opportunities. For Ecol Manag 221(1–3):27–41. doi:10.1016/j.foreco.2005.09.021

    Article  Google Scholar 

  • Xie Z, Roberts C, Johnson B (2008) Object-based target search using remotely sensed data: a case study in detecting invasive exotic Australian Pine in south Florida. ISPRS J Photogramm Remote Sens 63(6):647–660

    Article  Google Scholar 

  • Zavaleta E (2000) The economic value of controlling an invasive shrub. Ambio 29(8):462–467

    Google Scholar 

Download references

Acknowledgments

Thanks to S. Sesnie and E. Fleishman and two anonymous reviewers for helpful comments and to L. Pearlstine for use of figures. D. Kocis compiled initial information on data sources. This research was supported by the Department of Defense through the Strategic Environmental Research and Development Program (SERDP) grant number RC-1722 and by Cooperative Agreement H8C07080001 between the National Park Service and University of California, Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bethany A. Bradley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, B.A. Remote detection of invasive plants: a review of spectral, textural and phenological approaches. Biol Invasions 16, 1411–1425 (2014). https://doi.org/10.1007/s10530-013-0578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0578-9

Keywords

Navigation