Skip to main content
Log in

Applications of Bioflocculants for Heavy Metals Removal: A Systematic Review

  • Review article
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Heavy metals from various natural and anthropogenic processes have become a main threat to the aquatic environment owing to their hazardous impact. Bioflocculant is a natural organic polymer that is produced by microbes with flocculating capabilities. Compared to chemical flocculants, they are safer, biodegradable, and inexpensive. For decades, a diverse range of bioflocculant has been tested for their ability to remove heavy metals. This review is performed to gather the findings from December 2011 to June 2021 on bioflocculant produced by different bacterial species and their capabilities to remove heavy metals with different influencing factors. Based on defined inclusion criteria including bioflocculant treatment of metals in wastewater and aquatic environments, 35 studies were chosen to be included in this review. The results demonstrated that various microbial species, namely Pseudomonas sp., Bacillus sp., Paenibacillus sp., Pantoea sp., Proteus sp., Stenotrophomonas sp., Herbaspirillium sp., Halomonas sp., Achromobacter sp., Nocardiopsis sp., Turicibacter sp., Raoultella sp., and mixed bacteria (Cloacibacterium sp., and Rhizobium sp.) have the capability for heavy metal removal through bioflocculation. Important factors influencing heavy metal removal efficiencies among the bacteria include self-microbial properties, pH, bioflocculant dosage, metal concentration, contact time, and temperature. These findings outline the best available options for the utilization of bioflocculant to remove heavy metals in water treatment industries.

Article Highlights

  • This systematic literature review analyzed recent studies focused on bioflocculant for heavy metals removal.

  • Removal of heavy metals from water using bioflocculant was established to be an environmentally friendly and biodegradable approach.

  • Types of bioflocculants that can remove heavy metals and the metal removal efficiencies of bioflocculant affected by factors was summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data analyzed are available within the text of this manuscript.

References

  • Abu Tawila ZMM, Ismail S, Abu Amr SS, Abou Elkhair EK (2019) A novel efficient bioflocculant QZ-7 for the removal of heavy metals from industrial wastewater. RSC Adv 9(48):27825–27834. https://doi.org/10.1039/c9ra04683f

    Article  CAS  Google Scholar 

  • Aburas MMA (2016) bioremediation of toxic heavy metal by waste water actinomycetes. Int J Curr Res 8(01):24870–24875

    CAS  Google Scholar 

  • Agunbiade M, Pohl C, Ashafa O (2018) Bioflocculant production from Streptomyces platensis and its potential for river and waste water treatment. Braz J Microbiol 49:731–741

    Article  CAS  Google Scholar 

  • Antov MG, Šćiban MB, Prodanović JM, Kukić DV, Vasić VM, Đorđević TR, Milošević MM (2018) Common oak (Quercus robur) acorn as a source of natural coagulants for water turbidity removal. Ind Crops Prod 117:340–346. https://doi.org/10.1016/j.indcrop.2018.03.022

    Article  CAS  Google Scholar 

  • Arujanan M, Singaram M (2018) The biotechnology and bioeconomy landscape in Malaysia. New Biotechnol 40:52–59. https://doi.org/10.1016/j.nbt.2017.06.004

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO, Aremu OS (2019) Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil. Chemosphere 231:113–120

    Article  CAS  Google Scholar 

  • Azmi MA, Norli I, Farehah ZA, Ishak SA, Siti Norfariha MN, Azieda AT (2015) Crude and pure bioflocculants produced from bacillus subtillis for low concentration of copper (Cu2+) removal. Iran J Energy Environ 6(2):103–110

    Google Scholar 

  • Azzam AM, Tawfik A (2015) Removal of heavy metals using bacterial bio-flocculants of Bacillus sp. and Pseudomonas sp. J Environ Eng Landsc Manag 23(4):288–294

    Article  Google Scholar 

  • Batta N, Subudhi S, Lal B, Devi A (2013) Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity. Indian J Exp Biol 51:1004–1011

    CAS  Google Scholar 

  • Bayramoglu G (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101(3):285–300. https://doi.org/10.1016/s0304-3894(03)00178-x

    Article  CAS  Google Scholar 

  • Biswas JK, Banerjee A, Sarkar B, Sarkar D, Sarkar SK, Rai M, Vithanage M (2020) Exploration of an extracellular polymeric substance from earthworm gut bacterium (Bacillus licheniformis) for bioflocculation and heavy metal removal potential. Appl Sci 10(1):349. https://doi.org/10.3390/app10010349

    Article  CAS  Google Scholar 

  • Blanco CA, Sancho D, Caballero I (2010) Aluminium content in beers and silicon sequestering effects. Food Res Int 43(10):2432–2436

    Article  CAS  Google Scholar 

  • Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48(2):463–487

    Article  CAS  Google Scholar 

  • Cao G, Zhang Y, Chen L, Liu J, Mao K, Li K, Zhou J (2015) Production of a bioflocculant from methanol wastewater and its application in arsenite removal. Chemosphere 141:274–281. https://doi.org/10.1016/j.chemosphere.2015.08.009

    Article  CAS  Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782–2799. https://doi.org/10.1016/j.jece.2017.05.029

    Article  CAS  Google Scholar 

  • Chen H, Zhong C, Berkhouse H, Zhang Y, Lv Y, Lu W, Zhou J (2016) Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater. Chemosphere 155:163–169. https://doi.org/10.1016/j.chemosphere.2016.04.044

    Article  CAS  Google Scholar 

  • Converti A, Lodi A, Solisio C, Soletto D, Del Borghi M, Carvalho JDM (2006) Spirulina platensis Biomass as Adsorbent for Copper Removal Biomasa de Spirulina Platensis Como Adsorbente Para La Eliminación de Cobre. CYTA J Food 5(2):85–88

    CAS  Google Scholar 

  • Cosa S, Okoh A (2014) Bioflocculant production by a consortium of two bacterial species and its potential application in industrial wastewater and river water treatment. Pol J Environ Stud 23:689–696

    CAS  Google Scholar 

  • Crini G, Lichtfouse E (2018) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0785-9

    Article  Google Scholar 

  • Dih CC, Jamaluddin NA, Zulkeflee Z (2019) Removal of heavy metals in lake water using bioflocculant produced by Bacillus subtilis. Pertanika J Trop Agric Sc 42(1):89–101

    Google Scholar 

  • El-Gendy MMAA, El-Bondkly AMA (2016) Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014. Braz J Microbiol 47(3):571–586. https://doi.org/10.1016/j.bjm.2016.04.029+

    Article  CAS  Google Scholar 

  • Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Biores Technol 101(14):5043–5053

    Article  CAS  Google Scholar 

  • Fernandez-Luqueno F, Lopez-Valdez F, Gamero-Melo P, Luna-Suarez S, Aguilera-Gonzalez EN, Martínez AI, Pérez-Velázquez IR (2013) Heavy metal pollution in drinking water-a global risk for human health: a review. Afr J Environ Sci Technol 7(7):567–584

    Google Scholar 

  • Feng J, Yang Z, Zeng G, Huang J, Xu H, Zhang Y, Wang L (2013) The adsorption behavior and mechanism investigation of Pb (II) removal by flocculation using microbial flocculant GA1. Biores Technol 148:414–421

    Article  CAS  Google Scholar 

  • Gao J, Bao HY, Xin MX, Liu YX, Li Q, Zhang YF (2006) Characterization of a bioflocculant from a newly isolated Vagococcus sp. W31. J Zhejiang Univ 7(3):186–192. https://doi.org/10.1631/jzus.2006.B0186

    Article  CAS  Google Scholar 

  • Gomaa EZ (2012) Production and characteristics of a heavy metals removing bioflocculant produced by Pseudomonas aeruginosa. Pol J Microbiol 61(4):281–289

    Article  Google Scholar 

  • Gong WX, Wang SG, Sun XF, Liu XW, Yue QY, Gao BY (2008) Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Biores Technol 99(11):4668–4674. https://doi.org/10.1016/j.biortech.2007.09.077

    Article  CAS  Google Scholar 

  • Guo J (2015) Characteristics and mechanisms of Cu (II) sorption from aqueous solution by using bioflocculant MBFR10543. Appl Microbiol Biotechnol 99(1):229–240

    Article  CAS  Google Scholar 

  • Guo J, Chen C (2017) Removal of arsenite by a microbial bioflocculant produced from swine wastewater. Chemosphere 181:759–766. https://doi.org/10.1016/j.chemosphere.2017.04.119

    Article  CAS  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2006) Adsorption of Ni(II) on clays. J Colloid Interface Sci 295(1):21–32

    Article  Google Scholar 

  • He N, Li Y, Chen J (2004) Production of a novel polygalacturonic acid bioflocculant REA-11 by Corynebacterium glutamicum. Biores Technol 94(1):99–105

    Article  CAS  Google Scholar 

  • He J, Zou J, Shao Z, Zhang J, Liu Z, Yu Z (2010) Characteristics and flocculating mechanism of a novel bioflocculant HBF-3 produced by deep-sea bacterium mutant Halomonas sp. V3a’. World J Microbiol Biotechnol 26:1135–1141

    Article  CAS  Google Scholar 

  • Hua JQ, Zhang R, Chen RP, Liu GX, Yin K, Yu L (2021) Energy-saving preparation of a bioflocculant under high-salt condition by using strain Bacillus sp. and the interaction mechanism towards heavy metals. Chemosphere 267:129324

    Article  CAS  Google Scholar 

  • Jean E, Villemin D, Hlaibi M, Lebrun L (2018) Heavy metal ions extraction using new supported liquid membranes containing ionic liquid as carrier. Sep Purif Technol 201:1–9. https://doi.org/10.1016/j.seppur.2018.02.033

    Article  CAS  Google Scholar 

  • Jegatheesan V, Ravishankar H, Shu L, Wang J (2016) Application of green and physico-chemical technologies in treating water polluted by heavy metals. In: Ngo HH, Guo W, Surampalli RY, Tian C (eds) ZhangGreen technologies for sustainable water management. American Society of Civil Engineers, Virginia, pp 579–614

    Chapter  Google Scholar 

  • Joshi N, Rathod M, Vyas D, Kumar R, Mody K (2019) Multiple pollutants removal from industrial wastewaters using a novel bioflocculant produced by Bacillus licheniformis NJ3. Environ Prog Sustainable Energy 38(s1):S306–S314

    Article  CAS  Google Scholar 

  • Jiang X, Zhou X, Li C, Wan Z, Yao L, Gao P (2018) Adsorption of copper by flocculated Chlamydomonas microsphaera microalgae and polyaluminium chloride in heavy metal-contaminated water. J Appl Phycol. https://doi.org/10.1007/s10811-018-1636-6

    Article  Google Scholar 

  • Jiang B, Fu L, Cao W, Zhang B, Li F, Liu Y (2019) Microbial flocculant produced by a novel Paenibacillus sp., strain A9, using food processing wastewater to replace fermentation medium and its application for the removal of Pb (II) from aqueous solution. Adsorp Sci Technol 37(9–10):683–697

    Article  CAS  Google Scholar 

  • Kaçar Y, Arpa Ç, Tan S, Denizli A, Genç Ö, Arıca MY (2002) Biosorption of Hg(II) and Cd(II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochem 37(6):601–610. https://doi.org/10.1016/s0032-9592(01)00248-5

    Article  Google Scholar 

  • Kanamarlapudi SLRK, Chintalpudi VK, Muddada S (2018) Application of biosorption for removal of heavy metals from wastewater. Biosorption 18:69–116. https://doi.org/10.5772/intechopen.77315

    Article  Google Scholar 

  • Karthiga Devi K, Natarajan KA (2015a) Production and characterization of bioflocculants for mineral processing applications. Int J Mineral Proces 137:15–25. https://doi.org/10.1016/j.minpro.2015.02.007

    Article  CAS  Google Scholar 

  • Karthiga Devi K, Natarajan KA (2015b) Isolation and characterization of a bioflocculant from Bacillus megaterium for turbidity and arsenic removal. Mining Metallurg Explor 32(4):222–229

    Article  Google Scholar 

  • Kristianto H (2017) The potency of Indonesia native plants as natural coagulant: a mini review. Water Conserv Sci Eng 2(2):51–60. https://doi.org/10.1007/s41101-017-0024-4

    Article  Google Scholar 

  • Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail NI, Hasan HA, Othman AR, Purwanti, IF (2020) Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int J Environ Res Public Health 17(24):9312. https://doi.org/10.3390/ijerph17249312

    Article  CAS  Google Scholar 

  • Leventeli YASEMİN, Yalcin FÜSUN, Kilic MEHMET (2019) An investigation about heavy metal pollution of Duden and Goksu Streams (Antalya, Turkey). Appl Ecol Environ Res 17(2):2423–2436

    Article  Google Scholar 

  • Li O, Lu C, Liu A, Zhu L, Wang PM, Qian CD, Wu XC (2013) Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Biores Technol 134:87–93. https://doi.org/10.1016/j.biortech.2013.02.013

    Article  CAS  Google Scholar 

  • Li L, Ma F, Zuo H (2016) Production of a novel bioflocculant and its flocculation performance in aluminum removal. Bioengineered 7(2):98–105

    Article  CAS  Google Scholar 

  • Liang Z, Han B, Liu H (2010) Optimum conditions to treat high-concentration microparticle slime water with bioflocculants. Mining Sci Technol (china) 20(3):478–484. https://doi.org/10.1016/s1674-5264(09)60229-5

    Article  CAS  Google Scholar 

  • Lin J, Harichund C (2011) Industrial effluent treatments using heavy-metal removing bacterial bioflocculants. Water SA 37(2):265–270

    Article  CAS  Google Scholar 

  • Lin J, Harichund C (2012) Production and characterization of heavy-metal removing bacterial bioflocculants. Afr J Biotech 11(40):9619–9629

    CAS  Google Scholar 

  • Lu WY, Zhang T, Zhang DY, Li CH, Wen JP, Du LX (2005) A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension. Biochem Eng J 27(1):1–7. https://doi.org/10.1016/j.bej.2005.04.026

    Article  CAS  Google Scholar 

  • Micheletti E, Colica G, Viti C, Tamagnini P, De Philippis R (2008) Selectivity in the heavy metal removal by exopolysaccharide-producing cyanobacteria. J Appl Microbiol 105(1):88–94. https://doi.org/10.1111/j.1365-2672.2008.03728.x

    Article  CAS  Google Scholar 

  • Mohamed Noor MH, Wong S, Ngadi N, Mohammed Inuwa I, Opotu LA (2021) Assessing the effectiveness of magnetic nanoparticles coagulation/flocculation in water treatment: a systematic literature review. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03369-0

    Article  Google Scholar 

  • Moher DLA, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 1(8):336–341

    Article  Google Scholar 

  • Nguyen H, Manolova G, Daskalopoulou C, Vitoratou S, Prince M, Prina AM (2019) Prevalence of multimorbidity in community settings: A systematic review and meta-analysis of observational studies. J Comorbidity 9:1–15

    Article  Google Scholar 

  • Nouha K, Kumar RS, Tyagi RD (2016) Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Biores Technol 212:120–129. https://doi.org/10.1016/j.biortech.2016.04.021

    Article  CAS  Google Scholar 

  • Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI (2016) Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. MicrobiologyOpen 5(2):177–211. https://doi.org/10.1002/mbo3.334

    Article  Google Scholar 

  • Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Biorem Biodegrad 7(2):1–15. https://doi.org/10.4172/2155-6199.1000312

    Article  CAS  Google Scholar 

  • Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T (2003) Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Biores Technol 90(1):71–74

    Article  CAS  Google Scholar 

  • Palanivel TM, Sivakumar N, Al-Ansari A, Victor R (2020) bioremediation of copper by active cells of Pseudomonas stutzeri LA3 isolated from an abandoned copper mine soil. J Environ Manage 253:109706. https://doi.org/10.1016/j.jenvman.2019.109706

    Article  CAS  Google Scholar 

  • Pan Y, Shi B, Zhang Y (2009) Research on flocculation property of bioflocculant PG.a21 Ca. Modern Appl Sci. https://doi.org/10.5539/mas.v3n6p106

    Article  Google Scholar 

  • Pathak M, Devi A, Bhattacharyya KG, Sarma HK, Subudhi S, Lal B (2015) Production of a non-cytotoxic bioflocculant by a bacterium utilizing a petroleum hydrocarbon source and its application in heavy metal removal. RSC Adv 5(81):66037–66046. https://doi.org/10.1039/c5ra08636a

    Article  CAS  Google Scholar 

  • Pathak M, Sarma HK, Bhattacharyya KG, Subudhi S, Bisht V, Lal B, Devi A (2017) Characterization of a novel polymeric bioflocculant produced from bacterial utilization of n-hexadecane and its application in removal of heavy metals. Front Microbiol 8:1–15

    Article  Google Scholar 

  • Pereira S, Micheletti E, Zille A, Santos A, Moradas-Ferreira P, Tamagnini P, De Philippis R (2011) Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology 157(2):451–458. https://doi.org/10.1099/mic.0.041038-0

    Article  CAS  Google Scholar 

  • Pu L, Zeng YJ, Xu P, Li FZ, Zong MH, Yang JG, Lou WY (2020) Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment. Int J Biol Macromol 162:374–384

    Article  CAS  Google Scholar 

  • Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by citrobacter strain MCM B-181: characterization studies. Biotechnol Prog 15(2):228–237. https://doi.org/10.1021/bp990002r

    Article  CAS  Google Scholar 

  • Qasem NA, Mohammed RH, Lawal DU (2021) Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water 4:36

    Article  CAS  Google Scholar 

  • Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON (2018) Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: a critical review. Carbohydr Polym 199:353–364

    Article  Google Scholar 

  • Semaan M, Day SD, Garvin M, Ramakrishnan N, Pearce A (2020) Optimal sizing of rainwater harvesting systems for domestic water usages: a systematic literature review. Resour Conserv Recycl. https://doi.org/10.1016/j.rcrx.2020.100033

    Article  Google Scholar 

  • Sharafi K, Yunesian M, Nodehi RN, Mahvi AH, Pirsaheb M (2019) A systematic literature review for some toxic metals in widely consumed rice types (domestic and imported) in Iran: human health risk assessment, uncertainty and sensitivity analysis. Ecotoxicol Environ Saf 176:64–75. https://doi.org/10.1016/j.ecoenv.2019.03.072

    Article  CAS  Google Scholar 

  • Sharma V, Singh P (2015) Heavy metals pollution and it’s effect on environment and human health. Int J Recent Sci Res 6(12):7752–7755

    Google Scholar 

  • Sheng YL, Zhang Q, She YR, Li CB, Wang HJ (2006) Screening and flocculating properties of bioflocculant-producing microorganisms. J Univ Sci Technol Beijing 13(4):289–292

    Article  CAS  Google Scholar 

  • Siddharth T, Sridhar P, Vinila V, Tyagi RD (2021) Environmental applications of microbial extracellular polymeric substance (EPS): a review. J Environ Manag 287:112307. https://doi.org/10.1016/j.jenvman.2021.112307 (ISSN 0301 4797)

    Article  CAS  Google Scholar 

  • Siddiqui E, Pandey J (2019) Assessment of heavy metal pollution in water and surface sediment and evaluation of ecological risks associated with sediment contamination in the Ganga River: a basin-scale study. Environ Sci Pollut Res Int 26(11):10926–10940. https://doi.org/10.1007/s11356-019-04495-6

    Article  CAS  Google Scholar 

  • Srivastava NK, Majumder CB (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151(1):1–8. https://doi.org/10.1016/j.jhazmat.2007.09.101

    Article  CAS  Google Scholar 

  • Subudhi S, Batta N, Pathak M, Bisht V, Devi A, Lal B (2014) Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste. Chemosphere 113:116–124

    Article  CAS  Google Scholar 

  • Subudhi S, Bisht V, Batta N, Pathak M, Devi A, Lal B (2016) Purification and characterization of exopolysaccharide bioflocculant produced by heavy metal resistant Achromobacter xylosoxidans. Carbohyd Polym 137:441–451

    Article  CAS  Google Scholar 

  • Tawfik GM, Dila KAS, Mohamed MYF, Tam DNH, Kien ND, Ahmed AM, Huy NT (2019) A step by step guide for conducting a systematic review and meta-analysis with simulation data. Tropical Med Health 47(1):46

    Article  Google Scholar 

  • Timková I, Sedláková-Kaduková J, Pristaš P (2018) Biosorption and bioaccumulation abilities of actinomycetes/streptomycetes isolated from metal contaminated sites. Separations 5(4):54. https://doi.org/10.3390/separations5040054

    Article  CAS  Google Scholar 

  • Vimala RTV (2019) Role of bacterial bioflocculant on antibiofilm activity and metal removal efficiency. J Pure Appl Microbiol 13(3):1823–1830. https://doi.org/10.22207/JPAM.13.3.59

    Article  CAS  Google Scholar 

  • Vimala RTV, Escaline JL, Sivaramakrishnan S (2020) Characterization of self-assembled bioflocculant from the microbial consortium and its applications. J Environ Manage 258:110000

    Article  CAS  Google Scholar 

  • Wang L, Ma F, Qu Y, Sun D, Li AJ, Guo JB, Yu B (2011) Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World J Microbiol Biotechnol 27:2559–2565

    Article  CAS  Google Scholar 

  • Wang L, Chen Z, Yang J, Ma F (2015) Pb (II) biosorption by compound bioflocculant: performance and mechanism. Desalin Water Treat 53(2):421–429

    Article  CAS  Google Scholar 

  • Wang X, Hua Z, Mao H (2018) Influential factors for metal ions removal using extracellular polymeric substances produced by Cloacibacterium normanense. Water Environ J 32(4):650–656

    Article  CAS  Google Scholar 

  • Xiao Y, Watson M (2017) Guidance on conducting a systematic literature review. J Plan Educ Res. https://doi.org/10.1177/0739456x17723971

    Article  Google Scholar 

  • Yaashikaa PR, Kumar PS, Saravanan A, Vo DN (2021) Advances in biosorbents for removal of environmental pollutants: a review on pretreatment, removal mechanism and future outlook. J Hazard Mater 420:126596. https://doi.org/10.1016/j.jhazmat.2021.126596

    Article  CAS  Google Scholar 

  • Yao M, Lian B, Dong H, Hao J, Liu C (2013) Iron and lead ion adsorption by microbial flocculants in synthetic wastewater and their related carbonate formation. J Environ Sci 25(12):2422–2428. https://doi.org/10.1016/s1001-0742(12)60151-x

    Article  CAS  Google Scholar 

  • Yang M, Liang Y, Dou Y, Lan M, Gao X (2017) Characterisation of an extracellular polysaccharide produced by Bacillus mucilaginosus MY6-2 and its application in metal biosorption. Chem Ecol 33(7):625–636

    Article  CAS  Google Scholar 

  • Yin Y, Hu Y, Xiong F (2011) Sorption of Cu(II) and Cd(II) by extracellular polymeric substances (EPS) from Aspergillus fumigatus. Int Biodeterior Biodegradation 65(7):1012–1018. https://doi.org/10.1016/j.ibiod.2011.08.001

    Article  CAS  Google Scholar 

  • Yuan SJ, Sun M, Sheng GP, Li Y, Li WW, Yao RS, Yu HQ (2011) Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity. Environ Sci Technol 45(3):1152–1157

    Article  CAS  Google Scholar 

  • Zaki SA, Elkady MF, Farag S, Abd-El-Haleem D (2013) Characterization and flocculation properties of a carbohydrate bioflocculant from a newly isolated Bacillus velezensis 40B. J Environ Biol 34(1):51–58

    Google Scholar 

  • Zeng F, Xu L, Sun C, Liu H, Chen L (2020) A novel bioflocculant from Raoultella planticola enhances removal of copper ions from water. J Sens 2020:1

    Article  Google Scholar 

  • Zhang X, Sun J, Liu X, Zhou J (2013) Production and flocculating performance of sludge bioflocculant from biological sludge. Biores Technol 146:51–56. https://doi.org/10.1016/j.biortech.2013.07.036

    Article  CAS  Google Scholar 

  • Zhang J, Jiang B, Zhang B, Li Y, Fang P, Hu X (2019) The effect of microflocculant MBFA9 and the mechanism of Pb (II) and Zn (II) removal from an aqueous solution. Adsorp Sci Technol 37(5–6):451–467

    Article  CAS  Google Scholar 

  • Zhao H, Zhong C, Chen H, Yao J, Tan L, Zhang Y, Zhou J (2016) Production of bioflocculants prepared from formaldehyde wastewater for the potential removal of arsenic. J Environ Manage 172:71–76. https://doi.org/10.1016/j.jenvman.2016.02.024

    Article  CAS  Google Scholar 

  • Zhao G, Ji S, Sun T, Ma F, Chen Z (2017) Production of bioflocculants prepared from wastewater supernatant of anaerobic co-digestion of corn straw and molasses wastewater treatment. BioResources 12:1991–2003

    Article  CAS  Google Scholar 

Download references

Funding

This study is part of the project financially funded by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (FRGS) with the grant reference number FRGS/1/2020/WAB02/UPM/02/4 and project number 07-01-20-2238FR.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, data curation, formal analysis, and writing of original draft, YW; method validation, writing and review, supervision, HP; method validation, writing and review, supervision, LJL; conceptualization, funding acquisition, supervision, writing and review, ZZ.

Corresponding author

Correspondence to Zufarzaana Zulkeflee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for Publication

All authors gave consent for publication in the International Journal of Environmental Research.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Pushiri, H., Looi, L.J. et al. Applications of Bioflocculants for Heavy Metals Removal: A Systematic Review. Int J Environ Res 16, 73 (2022). https://doi.org/10.1007/s41742-022-00456-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41742-022-00456-z

Keywords

Navigation