Skip to main content

Abstract

Heavy metals presence in wastewater are usually associated with the usage of metal-based chemical substances such as inorganic coagulant, metal salt, and metal-based processing. Heavy metal is defined as an essential element that can be found in Earth. Few amounts of heavy metals would be beneficial for human beings, but excessive amounts of heavy metals would become a catastrophic disaster for the environment. Therefore, it is crucial to verify the water quality, mostly when even just 1.0 mg/L of the concentration may contribute a higher impact on the environment. The existing or the remaining low concentration of heavy metals of post-chemical treatment of polluted water of wastewater remains troublesome due to incompliance effluent discharge. This chapter will highlight the removal of heavy metals through bioremediation and biotransformation. Concomitantly the mechanism and the roles of extracellular polymeric substances (EPS) will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38

    Article  CAS  Google Scholar 

  • Abidli A, Huang Y, Rejeb ZB, Zaoui A, Park CB (2022) Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: recent progress, challenges, and future perspectives. Chemosphere 292:133102

    Article  CAS  PubMed  Google Scholar 

  • Akansha J, Nidheesh PV, Gopinath A, Anupama KV, Suresh Kumar M (2020) Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere 253:126652

    Article  CAS  PubMed  Google Scholar 

  • Arora PK (2020) Bacilli-mediated degradation of xenobiotic compounds and heavy metals. Front Bioeng Biotechnol 8:570307

    Article  PubMed  PubMed Central  Google Scholar 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Rev 4(1):37–59

    Google Scholar 

  • Balladares E, Jerez O, Parada F, Baltierra L, Hernández C, Araneda E, Parra V (2018) Neutralization and co-precipitation of heavy metals by lime addition to effluent from acid plant in a copper smelter. Miner Eng 122(15):122–129

    Article  CAS  Google Scholar 

  • Barkusaraey FH, Mafigholami R, Faezi Ghasemi M, Gholam K (2021) Optimization of zinc bioleaching from paint sludge using Acidithiobacillus thiooxidans based on response surface methodology. J Environ Sci Health 56(11):1243–1252

    Article  Google Scholar 

  • Bernard EI, Stanley IRO, Grace OI, Ebere PA, Abraham OA, Ibe KE (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol 2018:2568038

    Google Scholar 

  • Birungi ZS, Shen N, Evans MNC, Roestorff M (2020) Recovery of rare earths, precious metals and bioreduction of toxic metals from wastewater using algae. In: Bharagava R (ed) Emerging eco-friendly green Technologies for Wastewater Treatment, Microorganisms for sustainability, vol 18. Springer, Singapore, pp 267–297

    Chapter  Google Scholar 

  • Bong C, Malfatti CF, Azam F, Obayashi Y, Suzuki S (2010) The effect of zinc exposure on the bacteria abundance and proteolytic activity in seawater. In: Hamamura N, Suzuki S, Mendo S, Barroso CM, Iwata H, Tanabe S (eds) Interdisciplinary studies on environmental chemistry - biological responses to contaminants. Terrapub, pp 57–63

    Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A, Joshiba GJ, Naushad M (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5(3):2782–2799

    Article  CAS  Google Scholar 

  • Carvajal-Fl’orez E, Santiago-Alonso CG (2019) Technologies applicable to the removal of heavy metals from landfill leachate. Environ Sci Pollut Res 26(16):15725–15753

    Article  Google Scholar 

  • Chang SH, Teng TT, Norli I (2010) Extraction of Cu(II) from aqueous solutions by vegetable oil-based organic solvents. J Hazard Mater 181:868–872

    Article  CAS  PubMed  Google Scholar 

  • Chen SY, Cheng YK (2019) Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge. Chemosphere 234:346–355

    Article  CAS  PubMed  Google Scholar 

  • Das S, Hirak RD, Jaya C (2016) Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100(7):2967–2984

    Article  CAS  PubMed  Google Scholar 

  • El Liethy MA, Mohammed AD, El-K A, Abdelaal M, Marwa Waseem AH, Elgarhy AH, Kamika I, El-S GA, Mwaheb MA (2022) Temporal phytoremediation potential for heavy metals and bacterial abundance in drainage water. Sci Rep 12:8223

    Article  PubMed  PubMed Central  Google Scholar 

  • Eltarahony M, Kamal A, Zaki S, Abd-El-Haleem D (2021) Heavy metals bioremediation and water softening using ureolytic strains Metschnikowia pulcherrima and Raoultella planticola. J Chem Technol Biotechnol 96(11):3152–3165

    Article  CAS  Google Scholar 

  • Giebner F, Kaden L, Wiche O, Tischler J, Schopf S, Schlömann M (2019) Bioleaching of cobalt from an arsenidic ore. Miner Eng 131:73–78

    Article  CAS  Google Scholar 

  • Gina KY, Tanga YZ, Aziz MA (2002) Derivation and application of a new model for heavy metal biosorption by algae. Water Res 36:1313–1323

    Article  Google Scholar 

  • Gu T, Rastegar SO, Mousavi SM, Li M, Zhou M (2018) Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresour Technol 261:428–440

    Article  CAS  PubMed  Google Scholar 

  • Hampu N, Werber JR, Chan WY, Feinberg EC, Hillmyer MA (2020) Next generation ultrafiltration membranes enabled by block polymers. ACS Nano 14(12):16446–16471

    Article  CAS  PubMed  Google Scholar 

  • Hasanpour M, Hatami M (2020) Application of three-dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: a review study. Adv Colloid Interf Sci 284:102247

    Article  CAS  Google Scholar 

  • Iravani S, Varma RS (2020) Bacteria in heavy metal remediation and nanoparticle biosynthesis. ACS Sustain Chem Eng 8(14):5395–5409

    Article  CAS  Google Scholar 

  • Iravani S, Varma RS (2022) Genetically engineered organisms: possibilities and challenges of heavy metal removal and nanoparticle synthesis. Clean Technol 4:502–511

    Article  Google Scholar 

  • Jain R, Ashish P, Sreekrishnan TR, Dastidar MG (2010) Autoheated thermophilic aerobic sludge digestion and metal bioleaching in a two-stage reactor system. J Environ Sci 22(2):230–236

    Article  CAS  Google Scholar 

  • Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci 8:1336–1353

    Article  Google Scholar 

  • Kleinübinga SJ, Vieiraa RS, Beppua MM, Guibalb E, Carlos da Silvaa MG (2010) Characterization and evaluation of copper and nickel biosorption on acidic algae sargassum Filipendula. Mater Res 13(4):541–550

    Article  Google Scholar 

  • Kumar L, Bharadvaja N (2020) Microbial remediation of heavy metals. In: Shah MP (ed) Microbial bioremediation & biodegradation. Springer Singapore, Singapore, pp 49–72

    Chapter  Google Scholar 

  • Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME (2002) Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour Technol 96:1796–1803

    Article  Google Scholar 

  • Martínez EDM, Argumedo-Delira R, S’anchez-Viveros G, Alarc’on A, Mendoza-L’opez MR (2019) Microbial bioleaching of ag, au and Cu from printed circuit boards of mobile phones. Curr Microbiol 76(5):536–544

    Article  Google Scholar 

  • Meknasi YF, Tyagi RD, Narasiah KS (2000) Simultaneous sewage sludge digestion and metal leaching: effect of aeration. Process Biochem 36(3):263–273

    Article  Google Scholar 

  • Mustafa HM, Hayder G (2021) Recent studies on applications of aquatic weed plants. In phytoremediation of wastewater: a review article. Ain Shams Eng J 12(1):355–365

    Article  Google Scholar 

  • Pavithra KG, Kumar PS, Jaikumar V, Vardhan KH, SundarRajan P (2020) Microalgae for biofuel production and removal of heavy metals: a review. Environ Chem 18(6):1905–1923

    CAS  Google Scholar 

  • Pohl A (2020) Removal of heavy metal ions from water and wastewaters by sulfur containing precipitation agents. Water Air Soil Pollut 231(10):503

    Article  CAS  Google Scholar 

  • Pushkar BK, Sevak PI, Singh A (2015) Isolation and characterization of potential microbe for bio-remediating heavy metal from Mithi river. Ann Appl BioSci 2(2):20–27

    Google Scholar 

  • Rajadurai V, Anguraj BL (2020) Ionic liquids to remove toxic metal pollution. Environ Chem Lett 19(2):1173–1203

    Article  Google Scholar 

  • Ramsenthil R, Meyyappan R (2010) Single and multi-component biosorption of copper and zinc ions using microalgal resin. Int J Environ Sci Develop 1(4):298–301

    Article  Google Scholar 

  • Rangabhashiyam S, Balasubramanian P (2019) Characteristics, performances, equilibrium, and kinetic modeling aspects of heavy metal removal using algae. Bioresour Technol 5:261–279

    Google Scholar 

  • Rizki IN, Tanaka ON (2019) Thiourea bioleaching for gold recycling from ewaste. Waste Manage 84:158–165

    Article  CAS  Google Scholar 

  • Saravanan A, Senthil Kumar P, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa PR, Reshma B (2021) Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280:130595

    Article  CAS  PubMed  Google Scholar 

  • Sharma P (2021) Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: an update. Bioresour Technol 328:124835

    Article  CAS  PubMed  Google Scholar 

  • Sheikha D, Ashour I, Abu Al-Rub FA (2008) Biosorption of zinc on immobilized green algae: equilibrium and dynamics studies. J Eng Res 5(1):20–29

    Google Scholar 

  • Sreedevia SD, Suresh K, Guangming J (2022) Bacterial bioremediation of heavy metals in wastewater: a review of processes and applications. J Water Process Eng 48:102884

    Article  Google Scholar 

  • Velkova Z, Kirova G, Stoytcheva M, Kostadinova S, Todorova K, Gochev V (2018) Immobilized microbial biosorbents for heavy metals removal. Eng Life Sci 18(12):871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villar LD, Garcia O Jr (2003) Assessment of anaerobic sewage sludge quality for agricultural application after metal bioleaching. Environ Technol 24(12):1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Waldman RZ, Gao F, Phillip WA, Darling SB (2021) Maximizing selectivity: an analysis of isoporous membranes. J Memb Sci 633:119389

    Article  CAS  Google Scholar 

  • Wong SJ, Rene ER (2017) Bioprecipitation-a promising technique for heavy metal removal and recovery from contaminated wastewater streams. MOJ Civil Engineering 2(6):191–193

    Google Scholar 

  • Xing D, Magdouli S, Zhang J, Koubaa A (2020) Microbial remediation for the removal of inorganic contaminants from treated wood: recent trends and challenges. Chemosphere 258:127429

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Wei S, Ji L, Xiaolei Z (2020) Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere 249:126134

    Article  CAS  PubMed  Google Scholar 

  • Yavuz H, Denizli A, Güngünes H, Safarikova M, Safarik I (2006) Biosorption of mercury on magnetically modified yeast cells. Sep Purif Technol 52:253–260

    Article  CAS  Google Scholar 

  • Yin K, Wang Q, Lv M, Chen L (2019) Microorganism remediation strategies towards heavy metals. Chem Eng J 360:1553–1563

    Article  CAS  Google Scholar 

  • Yu W, Hu J, Yu Y, Ma D, Gong W, Qiu H, Hu Z, Gao HW (2021) Facile preparation of sulfonated biochar for highly efficient removal of toxic pb(II) and Cd1(II) from wastewater. Sci Total Environ 750:141545

    Article  CAS  PubMed  Google Scholar 

  • Zhan J, Yang X, Zhang X, Wang Y, Cai X, Chen H (2021) Bioprecipitation facilitates the green synthesis of sulfidated nanoscale zero-valent iron particles for highly selective dechlorination of trichloroethene. J Environ Chem Eng 9(5):106050

    Article  CAS  Google Scholar 

  • Zhu Y, Fan W, Zhou T, Li X (2019) Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms. Sci Total Environ 678:253–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norli Ismail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ismail, N., Talebi, A., Ahmad, H. (2023). Microbial Remediation of Heavy Metals. In: Singh, R.P., Singh, P., Srivastava, A. (eds) Heavy Metal Toxicity: Environmental Concerns, Remediation and Opportunities. Springer, Singapore. https://doi.org/10.1007/978-981-99-0397-9_20

Download citation

Publish with us

Policies and ethics