Skip to main content
Log in

Optimization of Adsorption for the Removal of Cadmium from Aqueous Solution Using Turkish Coffee Grounds

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

In this study, the effectiveness of the use of spent Turkish coffee grounds as an adsorbent in the treatment of water polluted with cadmium (Cd) ions through adsorption was investigated. The change in adsorption efficiency (%) with independent variable parameters was planned using the Box–Behnken experimental design method, which is a subset of the response surface methodology (RSM), and the relationship was modeled mathematically. The optimum amount of adsorbent, initial Cd (II) concentration, and pH were found to be 3.63 g/L, 67.97 mg/L, and pH 8.87, respectively, when the desirability function method was applied. While the highest adsorption capacity under optimum conditions is 1.32 mg/g, Cd (II) removal efficiency is 96%. Batch adsorption test results demonstrated that Cd (II) adsorption occurred very rapidly and equilibrium was reached in a short period of 60 min. The adsorption of Cd (II) ions increased as pH increased. As the initial Cd (II) concentration increased (up to the initial concentration of 200 mg/L), the removal percentage and adsorption capacity also increased. The adsorption behavior of Cd (II) was investigated with the Langmuir and Freundlich models, and the experimental data were determined to be compatible with the Langmuir isotherm (R2 = 0.9996). Furthermore, the pseudo-second-order model described the adsorption kinetics of Cd (II) ions on the coffee grounds in the best way. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope results and zeta potential showed that Cd (II) was bound to coffee by electrostatic forces and complexation reactions.

Article Highlights

  • The adsorption process is very popular in the treatment of water polluted with heavy metals.

  • This study has focused on low-cost natural waste materials as an alternative to commercial adsorbents.

  • Cd (II) was also removed from the solution with the precipitation process after pH 6.

  • We found out that ASTC was an effective adsorbent in the removal of Cd(II) from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdolali A, Ngo HH, Guo W, Lu S, Chen SS, Nguyen NC, Zhang X, Wang J, Wu Y (2016) A breakthrough biosorbents in removing heavy metals: equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Sci Total Environ 542:603–611

    Article  CAS  Google Scholar 

  • Abollino O, Aceto M, Malandrino M, Sarzanini C, Mentasti E (2003) Adsorption of heavy metals on Na-montmorillonite: effect of pH and organic substances. Water Res 37(7):1619–1627

    Article  CAS  Google Scholar 

  • Aceto SR, Lu Y, Narayanan R, Heskett D, Wujcik KE, Bose A (2018) Hexagonally patterned mixed surfactant room temperature synthesis of titania-lead selenide nanocomposites. Adv Compos Hybrid Mater 2:389–396

    Article  Google Scholar 

  • Adinehvand J, Shokuhi Rad A, Tehrani AS (2016) Acid-treated zeolite (clinoptilolite) and its potential to zinc removal from water sample. Int J Envıron Sci Te 13:2705–2712

    Article  CAS  Google Scholar 

  • Agwaramgbo LOE, Cardoso RF, Matos TS (2016) Copper and zinc removal from contaminated water using coffee waste. J Sci Res Rep 12(6):1–9

    Google Scholar 

  • Akgün NA, Bozkurt B, Salt I (2013) Removal of copper from industrıal wastewater using spent coffee grounds. Sigma J Eng Nat Sci 31:44–52

    Google Scholar 

  • Al-Shannag M, Al-Qodah Z, Bani-Melhem K, Qtaishat MR, Alkasrawi M (2015) Heavy metal ions removal from metal plating wastewater using electrocoagulation: kinetic study and process performance. Chem Eng J 260:749–756

    Article  CAS  Google Scholar 

  • Anastopoulos I, Karamesouti M, Mitropoulos AC, Kyzas GZ (2017) A review for coffee adsorbents. J Mol Liq 229:555–565

    Article  CAS  Google Scholar 

  • Asık NA (2017) A Research on changing coffee consumption habits and turkish coffee. J Tour Gastron Stud 5(4):310–325

    Article  Google Scholar 

  • Aslan N (2007) Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a multi-gravity separator for coal cleaning. Fuel 86:769–776

    Article  CAS  Google Scholar 

  • Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276:47–52

    Article  CAS  Google Scholar 

  • Bashir MJ, Aziz HA, Yusoff MS, Adlan MN (2010) Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254(1):154–161

    Article  CAS  Google Scholar 

  • Basu M, Guha AK, Ray L (2017) Adsorption behavior of cadmium on husk of lentil process. Saf Environ Prot 106:11–22

    Article  CAS  Google Scholar 

  • Behera SK, Meena H, Chakraborty S, Meikap BC (2018) Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol 28(4):621–629

    Article  CAS  Google Scholar 

  • Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B Methods 13:1–45

    Google Scholar 

  • Chavan AA, Pinto J, Liakos I, Bayer IS, Lauciello S, Athanassiou A, Fragouli D (2016) Spent coffee bioelastomeric composite foams for the removal of Pb2+ and Hg2+ from water. ACS Sustain Chem Eng 4:5495–5502

    Article  CAS  Google Scholar 

  • Christensen TH, Huang PM (1999) Solid phase cadmium and reactions of aqueous cadmium with soil surfaces. In: McLaughlin MJ, Singh BR (eds) Cadmium in plants and soil sciences. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dabrowski A, Hubicki Z, Podkoscielny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56(2):91–106

    Article  CAS  Google Scholar 

  • Das AK, Dewanjee S (2018) Chapter 3—optimization of extraction using mathematical models and computation. In: Satyajit DS, Lutfun N (eds) Computational phytochemistry. Elsevier, Amsterdam, pp 75–106

    Chapter  Google Scholar 

  • Demey H, Vincent T, Guibal E (2018) A novel algal-based sorbent for heavy metal removal. Chem Eng J 332:582–595

    Article  CAS  Google Scholar 

  • Deshmukh PD, Khadse GK, Shinde VS, Labhasetwar P (2017) Cadmium removal from aqueous solutions using dried banana peels as an adsorbent: kinetics and equilibrium modelling. J Bioremediat Biodegrad 8:395

    Article  CAS  Google Scholar 

  • Dialynas E, Diamadopoulos E (2009) Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 238:302–311

    Article  CAS  Google Scholar 

  • Dimitrova SV, Mehandgiev DR (1998) Lead removal from aqueous solutions by granulated blast-furnace slag. Water Res 32:3289–3292

    Article  CAS  Google Scholar 

  • Ebrahimi A, Ehteshamib M, Dahrazmac B (2015) Isotherm and kinetic studies for the biosorption of cadmium from aqueous solution by Alhagi maurorum seed. Process Saf Environ 98:374–382

    Article  CAS  Google Scholar 

  • Elsherbiny AS, El-Hefnawy ME, Gemeay AH (2018) Adsorption efficiency of polyaspartate-montmorillonite composite towards the removal of Pb(II) and Cd(II) from aqueous solution. J Polym Environ 26:411

    Article  CAS  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  • Feizi M, Jalali M (2015) Removal of heavy metals from aqueous solutions using sunflower, potato, canola and walnut shell residues. J Taiwan Inst Chem E 54:125–136

    Article  CAS  Google Scholar 

  • Flores-Cano JV, Leyva-Ramos R, Mendoza-Barron J, Guerrero-Coronado RM, Aragon-Pina A, Labrada-Delgado GJ (2013) Sorption mechanism of Cd(II) from water solution onto chicken eggshell. App Surf Sci 276:682–690

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem C 57:385–470

    CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  • Garba ZN, Bello I, Galadima A, Lawal AY (2016) Optimization of adsorption conditions using central composite design for the removal of copper (II) and lead (II) by defatted papaya seed. Karbala Int J Mod Sci 2:20–28

    Article  Google Scholar 

  • Gecgel C, Simsek UB, Turabik M (2018) Degradation of imidacloprid in aqueous solutions by zero valent iron nanoparticles in the nitrogen medium. Desalin Water Treat 114:341–355

    Article  CAS  Google Scholar 

  • Ghaedi A, Ghaedi M, Vafaei A, Iravani N, Keshavarz M, Rad M, Tyagi I, Agarwal S, Gupta VK (2015) Adsorption of copper (II) using modified activated carbon prepared from pomegranate wood: optimization by bee algorithm and response surface methodology. J Mol Liq 206:195–206

    Article  CAS  Google Scholar 

  • Guo Z, Zhang X, Kang Y, Zhang J (2017) Biomass-derived carbon sorbents for Cd(II) removal: activation and adsorption mechanism. Acs Sustaın Chem Eng 5(5):4103–4109

    Article  CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manage 92:2355–2388

    Article  CAS  Google Scholar 

  • Ho YS, McKay GA (1998) Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Chem Eng Res Des 76B:332–340

    Google Scholar 

  • Ho YS, Ofomaja AE (2006) Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem Eng J 30:117–123

    Article  CAS  Google Scholar 

  • Homagai PL, Ghimire KN, Inoue K (2010) Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresour Technol 101:2067

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  CAS  Google Scholar 

  • Hunsom M, Pruksathorn K, Damronglerd S, Vergnes H, Duverneuil P (2005) Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res 39(4):610–616

    Article  CAS  Google Scholar 

  • Inglesby MK, Gray GM, Wood DF, Gregorski KS, Robertson RG, Sabellano GP (2005) Surface characterization of untreated and solvent-extracted rice straw. Colloids Surf B 43:83–94

    Article  CAS  Google Scholar 

  • International Coffee Organization (ICO) (2018) Trade statistics tables. http://www.ico.org/trade_statistics.asp. Accessed 28 Dec 2018

  • Jalayeri H, Salarirad MM, Ziaii M (2016) Kinetics and isotherm modelling of Zn(II) ions adsorption onto mine soils. Physicochem Probl Mi 52(2):767–779

    CAS  Google Scholar 

  • Jamil A, Umer S, Waheed Z, Muhammad S, Amara D, Shafique A (2010) Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour Technol 101(6):1752–1755

    Article  CAS  Google Scholar 

  • Jeon C (2018) Adsorption behavior of cadmium ions from aqueous solution using pen shells. J Ind Eng Chem 58:57–63

    Article  CAS  Google Scholar 

  • Jlassi K, Abidi R, Benna M, Chehimi MM, Kasak P, Krupa I (2018) Bentonite-decorated calix [4] arene: a new, promising hybrid material for heavy-metal removal. Appl Clay Sci 161:15–22

    Article  CAS  Google Scholar 

  • Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv Environ Res 7(2):471–478

    Article  CAS  Google Scholar 

  • Kalariya PD, Namdev D, Srinivas R, Gananadhamu S (2017) Application of experimental design and response surface technique for selecting the optimum RP-HPLC conditions for the determination of moxifloxacin HCl and ketorolac tromethamine in eye drops. J Saudi Chem Soc 21(1):S373–S382

    Article  CAS  Google Scholar 

  • Kantar Ç, Ikizoglu G, Koleli N (2009) Modeling Cd(II) adsorption to heterogeneous subsurface soils in the presence of citric acid using a semi-empirical surface complexation approach. J Contam Hydrol 110:100–109

    Article  CAS  Google Scholar 

  • Karbassi AR, Ayaz GO (2007) Flocculation of Cu, Zn, Pb, Ni and Mn during mixing of Talar River water with Caspian seawater. Int J Environ Res 1(1):66–73

    CAS  Google Scholar 

  • Kochkodan V, Darwish NB, Hilal N (2015) The chemistry of boron in water. Elsevier, Amsterdam

    Book  Google Scholar 

  • Kumar R, Chawla J, Kaur I (2015) Removal of cadmium ion from wastewater by carbon-based nanosorbents: a review. J Water Health 13(1):18–33

    Article  Google Scholar 

  • Kyzas GZ (2012) Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions. Materials 5:1826–1840

    Article  CAS  Google Scholar 

  • Kyzas GZ, Fu J, Matis KA (2014) New biosorbent materials: selectivity and bioengineering insights. Processes 2:419–440

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24(4):1–39

    Google Scholar 

  • Lam B, Déon S, Morin-Crini N, Crini G, Fievet P (2018) Polymer-enhanced ultrafiltration for heavy metal removal: influence of chitosan and carboxymethyl cellulose on filtration performances. J Clean Prod 171:927–933

    Article  CAS  Google Scholar 

  • Lata S, Singh PK, Samadder SR (2014) Regeneration of adsorbents and recovery of heavy metals: a review. Int J Environ Sci 12(4):1461–1478

    Article  CAS  Google Scholar 

  • Lavecchia R, Medici F, Patterer M, Zuorro A (2016) Lead removal from water by adsorption on spent coffee grounds. Chem Eng Trans 47:295–300

    Google Scholar 

  • Lee DH, Jeong IJ, Kim KJ (2018) A desirability function method for optimizing mean and variability of multiple responses using a posterior preference articulation approach. Qual Reliab Eng Int 34:360–376

    Article  Google Scholar 

  • Leyva-Ramos R, Rangel-Mendez JR, Mendoza-Baron J, Fuentes-Rubio L, Guerrero-Coronado RM (1997) Adsorption of cadmium(II) from aqueous solution onto activated carbon. Water Sci Technol 35:205–210

    Article  CAS  Google Scholar 

  • Leyva-Ramos R, Landin-Rodriguez LE, Leyva-Ramos S, Medellin-Castillo NA (2012) Modification of corncob with citric acid to enhance its capacity for adsorbing Cd(II) from water solution. Chem Eng J 180:113–120

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Meng J, Liu X, Xu J, Wang F, Brookes P (2018) Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J Hazardous Mater 344:1–11

    Article  CAS  Google Scholar 

  • Manohar M, Joseph J, Selvaraj T, Sivakumar D (2013) Application of Box Behnken design to optimize the parameters for turning Inconel 718 using coated carbide tools. Int J Sci Eng Res 4(4):620–642

    Google Scholar 

  • Mariana, Marwan, Mulana F, Yunardi, Ismail TA, Hafdiansyah MF (2018) Activation and characterization of waste coffee grounds as bio-sorbent. In: IOP conference series: materials science and engineering, vol 1, p 334

  • Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, Asefa Visentainer TJV, Almeida VC (2015) Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem Eng J 260:291–299

    Article  CAS  Google Scholar 

  • Metcalf E (2003) Wastewater engineering, treatment and reuse, 4th edn. Tata McGraw–Hill Publishing Co, New Delhi

    Google Scholar 

  • Montgomery DC (2014) Design and analysis of experiments, 8th edn. Wiley, New York

    Google Scholar 

  • Moradi O (2011) The removal of ions by functionalized carbon nanotube: equilibrium, isotherms and thermodynamic studies. Chem Biochem Eng Q 25(2):229–240

    CAS  Google Scholar 

  • Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, New York

    Google Scholar 

  • Naiya TK, Bhattacharya AK, Das SK (2009) Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alümina. J Colloid Interface Sci 333:14–26

    Article  CAS  Google Scholar 

  • Nayak V, Jyothi MS, Balakrishna RG, Padaki M, Déon S (2017) Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample. J Hazard Mater 331:289–299

    Article  CAS  Google Scholar 

  • Njoku V, Foo K, Asif M, Hameed B (2014) Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem Eng J 250:198–204

    Article  CAS  Google Scholar 

  • Okturen AF, Sönmez S, Çıtak S (2007) Kadmiyumun çevre ve insan sağlığı üzerine etkileri. Derim 24:32–39

    Google Scholar 

  • Oliveira LC, Petkowicz DI, Smaniotto A, Pergher SB (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38(17):3699–3704

    Article  CAS  Google Scholar 

  • Panda GC, Das SK, Bandopadhyay TS, Guha AK (2007) Adsorption of nickel on husk of Lathyrus sativus: behavior and binding mechanism. Colloids Surf B 57:135–142

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioproc E 15:86–102

    Article  CAS  Google Scholar 

  • Patterer S, Bavasso I, Sambeth J, Medici F (2017) Cadmium removal from aqueous solution by adsorption on spent coffee grounds. Chem Eng Trans 60:157–162

    Google Scholar 

  • Purna Chandra Rao G, Satyaveni S, Ramesh A, Seshaiah K, Murthy KSN, Choudary NV (2006) Sorption of cadmium and zinc from aqueous solutions by zeolite 4A, zeolite 13× and bentonite. J Environ Manage 81:265–272

    Article  CAS  Google Scholar 

  • Pyrzynska K (2019) Removal of cadmium from wastewaters with low-cost adsorbents. J Environ Chem Eng 7:102795

    Article  CAS  Google Scholar 

  • Rao MM, Rao GP, Seshaiah K, Choudary NV, Wang MC (2008) Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions. Waste Manage 28:849–858

    Article  CAS  Google Scholar 

  • Ricordel S, Taha S, Cisse I, Dorange G (2001) Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep Purif Technol 24(3):389–401

    Article  CAS  Google Scholar 

  • Rudzinski W, Plazinski WJ (2007) Studies of the kinetics of solute adsorption at solid/solution interfaces: on the possibility of distinguishing between the diffusional and the surface reaction kinetic models by studying the pseudo-first-order kinetics. J Phys Chem C 111:15100–15110

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M, Akhtar MW (2005) Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater B 117:65

    Article  CAS  Google Scholar 

  • Said KAM, Amin MAM (2015) Overview on the response surface methodology (RSM) in extraction processes. JASPE 2(1):8–17

    Google Scholar 

  • Schiewer S, Volesky B (1995) Modeling of the proton-metal ion exchange in biosorption. Environ Sci Technol 29:3049–3058

    Article  CAS  Google Scholar 

  • Serrano-Gomez J, Lopez-Gonzalez H, Olguin MT, Bulbulian S (2015) Carbonaceous material obtained from exhausted coffee by an aqueous solution combustion process and used for cobalt(II) and cadmium(II) sorption. J Environ Manage 156:121–127

    Article  CAS  Google Scholar 

  • Shami Rahim B, Shojaei V, Khoshdast H (2019) Efficient cadmium removal from aqueous solutions using a sample coal waste activated by rhamnolipid biosurfactant. J Environ Manage 231:1182–1192

    Article  CAS  Google Scholar 

  • Son EB, Poo KM, Mohamed HO, Choi YJ, Cho WC, Chae KJ (2018a) A novel approach to developing a reusable marine macro-algae adsorbent with chitosan and ferric oxide for simultaneous efficient heavy metal removal and easy magnetic separation. Bioresour Technol 259:381–387

    Article  CAS  Google Scholar 

  • Son EB, Poo KM, Chang JS, Chae KJ (2018b) Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ 615:161–168

    Article  CAS  Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2006) Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chem Eng J 117:79–91

    Article  CAS  Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2008) Adsorption of toxic metal ions onto activated carbon, study of sorption behaviour through characterization and kinetics. Chem Eng Process 47:1269–1280

    Article  CAS  Google Scholar 

  • Stirk WA, Van Staden J (2002) Desorption of cadmium and the reuse of brown seaweed derived products as biosorbents. Bot Mar 45:9–16

    Article  CAS  Google Scholar 

  • Su CXH, Teng TT, Alkarkhi AFM, Low LW (2014) Imperata cylindrica (cogongrass) as an adsorbent for methylene blue dye removal: process optimization. Water Air Soil Pollut 225:1–12

    Google Scholar 

  • Wang FY, Wang H, Ma WJ (2010) Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-bamboo charcoal. J Hazard Mater 177:300–306

    Article  CAS  Google Scholar 

  • Woei-Jye L, Daryoush E, Goh SS, Sean P, Fauzi IA (2017) 9—Ultrafiltration membranes ıncorporated with carbon-based nanomaterials for antifouling improvement and heavy metal removal. In: Ismail AF, Goh PS (eds) Carbon-based polymer nanocomposites for environmental and energy applications. Elsevier, Cambridge, pp 217–232

    Google Scholar 

  • Xu Y, Zhang C, Zhao M, Rong H, Zhang K, Chen Q (2017) Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge. Chemosphere 168:1152–1157

    Article  CAS  Google Scholar 

  • Xu J, Cao Z, Zhang Y, Yuan Z, Lou Z, Xu X, Wang X (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism. Chemosphere 195:351–364

    Article  CAS  Google Scholar 

  • Ye G, Ma L, Li L, Liu J, Yuan S, Huang G (2017) Application of Box-Behnken design and response surface methodology for modeling and optimization of batch flotation of coal. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2017.1350657

    Article  Google Scholar 

  • Zhang GS, Qu JH, Liu HJ, Liu RP, Li GT (2007) Removal mechanism of As(III) by a novel Fe–Mn binary oxide adsorbent: oxidation and sorption. Environ Sci Tech 41:4613–4619

    Article  CAS  Google Scholar 

  • Zhao X, Ma X, Zheng P (2018) The preparation of carboxylic-functional carbon-based nanofibers for the removal of cationic pollutants. Chemosphere 202:298–305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydeniz Demir Delil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir Delil, A., Gülçiçek, O. & Gören, N. Optimization of Adsorption for the Removal of Cadmium from Aqueous Solution Using Turkish Coffee Grounds. Int J Environ Res 13, 861–878 (2019). https://doi.org/10.1007/s41742-019-00224-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-019-00224-6

Keywords

Navigation