Skip to main content
Log in

Recent advancements in plasmonic optical biosensors: a review

  • Review Paper
  • Published:
ISSS Journal of Micro and Smart Systems Aims and scope Submit manuscript

Abstract

This article presents a review of various recent developments over plasmonic optical sensors for in vivo and in vitro detection. This study also highlights the relative study over detection of various biochemical, cells, bacteria, and viruses, i.e., application of plasmon-enhanced optical sensing in in vivo and in vitro detection. A brief overview of the current biosensing devices, plasmonic-based sensors, their types, comparative study over in vivo and in vitro detection, wearable sensors, packaging of optic-plasmonic sensors, and colloidal nanostructures (NSs) is reported in this study. Plasmonic optical sensors nowadays are employed in a plethora of applications ranging from environmental monitoring to bio (chemical) sensing. In brief, these sensors are applicable for biomedical diagnosis, drug discovery & therapies, material analysis & shaping, (bio) chemical sensing, and environmental monitoring. Plasmonics is a promising field of technology that examines the interaction between light and metallic NSs at the metal–dielectric interface. The commonly employed plasmonic-based methods such as surface plasmonic resonance (SPR) and localized SPR (LSPR), comparative study over the recently reported sensors are well discussed in this review work. This comprehensive study on the extent of biosensor innovation and the respective challenges would open new avenues for exploring the use of plasmonic optical sensors for commercial applications. Overall, we review the major pros and cons of plasmonic-based biosensing with a brief outlook on its advancement and applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3 
Fig. 4

Similar content being viewed by others

References

  • Aberasturi D, Serrano A, Liz-Marzán L (2015) Modern applications of plasmonic nanoparticles: from energy to health. Adv Opt Mat 3:602–617.

  • Agrawal N, Zhang B, Saha C, Kumar C, Kaushik BK, Kumar S (2020a) Development of dopamine sensor using silver nanoparticles and PEG-functionalized tapered optical fiber structure. IEEE Trans Biomed Eng 67(6):1542–1547

    Article  Google Scholar 

  • Agrawal N, Zhang B, Saha C, Kumar C, Pu X, Kumar S (2020b) Sensitive cholesterol sensor using gold and zinc-oxide nanoparticles immobilized core mismatch MPM/SPS probe. J Lightwave Technol 38(8):2523–2529

    Article  Google Scholar 

  • Agrawal N, Saha C, Kumar C, Singh R, Zhang B, Kumar S (2020c) Development of uric acid sensor using copper oxide and silver nanoparticles immobilized SMSMS fiber structure-based probe. IEEE Trans Instrumentation Meas 69(11):9097–9104

    Article  Google Scholar 

  • Agrawal N, Saha C, Kumar C, Singh R, Zhang B, Jha R, Kumar S (2020d) Detection of L-cysteine using silver nanoparticles and graphene oxide immobilized tapered sms optical fiber structure. IEEE Sensors J 20(19):11372–11379

    Article  Google Scholar 

  • Agrawal N, Zhang B, Saha C, Kumar C, Kaushik BK, Kumar S (2019) Development of Dopamine Sensor using Silver Nanoparticles and PEG−Functionalized Tapered Optical Fiber Structure. IEEE Trans Biomed Eng, pp 1–1.

  • Ahmed A, Rushworth JV, Hirst NA, Millner PA (2014) Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 27(3):631–646

    Article  Google Scholar 

  • Alsawafta M, Wahbeh M, Truong V-V (2012) Plasmonic modes and optical properties of gold and silver ellipsoidal nanoparticles by the discrete dipole approximation. J Nanomater, 457968.

  • Anower MS, Rahman MM, Rahman MS (2020) Hybrid Heterostructures for SPR Biosensor. IntechOpen 1–16

  • Aroganam G, Manivannan N, Harrison D (2019) Review on wearable technology sensors used in consumer sport applications. Sensors (basel, Switzerland) 19(9):1983

    Article  Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    Article  Google Scholar 

  • Bauch M, Toma K, Toma M, Zhang Q, Dostalek J (2014) Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9(4):781–799

    Article  Google Scholar 

  • E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, “Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications,” J Photochem Photobiol C: Photochem Rev , vol. 17, pp. 26–49, 2013/12/01/, 2013.

  • Brooks SM, Alper HS (2021) Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat Commun 12(1):1390.

  • Budd J, Miller BS, Manning EM, Lampos V, Zhuang M, Edelstein M, Rees G, Emery VC, Stevens MM, Keegan N, Short MJ, Pillay D, Manley E, Cox IJ, Heymann D, Johnson AM, McKendry RA (2020) Digital technologies in the public-health response to COVID-19. Nat Med 26(8):1183–1192.

  • Caliendo AM, Gilbert DN, Ginocchio CC, Hanson KE, May L, Quinn TC, Tenover FC, Alland D, .Blaschke AJ, Bonomo RA, Carroll KC, Ferraro MJ, Hirschhorn LR, Joseph WP, Karchmer T, MacIntyre AT, Reller LB, Jackson AF (2013), “Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis 57(Suppl 3):S139–S170.

  • Camara AR, Gouvêa PMP, Dias ACMS, Braga AMB, Dutra RF, de Araujo RE, Carvalho ICS (2013) Dengue immunoassay with an LSPR fiber optic sensor. Optics Express 21(22):27023–27031.

  • Chen K-C, Li Y-L, Wu C-W, Chiang C-C (2018) Glucose sensor using U-Shaped optical fiber probe with gold nanoparticles and glucose oxidase. Sensors (basel, Switzerland) 18(4):1217

    Article  Google Scholar 

  • Chong X, Zhang Y, Li E, Kim K-J, Ohodnicki PR, Chang C-h, Wang AC (2018) Surface-enhanced infrared absorption: pushing the frontier for on-chip gas sensing. ACS Sensors 3(1):230–238.

  • Darvill D, Centeno A, Xie F (2013) Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Phys Chem Chem Phys 15(38):15709–15726

    Article  Google Scholar 

  • Ding X, Liow C, Mengxin Z, Huang R, Li C, Shen H, Liu M, Zou Y, Gao N, Zhang Z, li Y, Wang Q, Li S, Jiang J (2014) Surface Plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J Am Chem Soc, 136.

  • Dugandžić V, Kupfer S, Jahn M, Henkel T, Weber K, Cialla-May D, Popp J (2019) SERS-based molecular sensor for selective detection and quantification of copper(II) ions. Sensors Actuators B Chem. 279:230–237.

  • Farcau C, Craciun A-M, Vallée RAL (2020) Surface-enhanced fluorescence imaging on linear arrays of plasmonic half-shells. J Chem Phys 153(16):164701.

  • Firdous S, Anwar S, Rafya R (2018) Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases. Laser Phys Lett 15(6):065602.

  • Gamboa JM, Leong KW (2013) In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev65(6):800–810.

  • Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44:283001.

  • Gauglitz G (2020) Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal Bioanal Chem 412(14):3317–3349.

  • Genç A, Patarroyo J, Sancho-Parramon J, Bastús NG, Puntes V, Arbiol J (2017) Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications. Nanophotonics 6(1):193–213

    Article  Google Scholar 

  • Geum-Yoon O, Doo-Gun K, Woon-Kyung C, Young-Wan C (2008) Analysis of a novel micro surface plasmon resonance sensor with attenuated total reflection mirror. Proc SPIE Int Soc Opt Eng 6897:1–9

    Google Scholar 

  • Gillette JR (1984) Problems in correlating invitro and invivo studies of drug metabolism. In: Benet LZ, Levy G, Ferraiolo BL (eds) Pharmacokinetics: a modern view. Springer US, Boston, pp 235–252

  • Gupta BD, Verma RK (2009) Surface Plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J Sensors, pp. 979761.

  • Harris E, Tanner M (2000) Health technology transfer. BMJ (clinical Research Ed) 321(7264):817–820

    Article  Google Scholar 

  • Heidemann BR, Chiamenti I, Oliveira MM, Muller M, Fabris JL (2018) Functionalized long period grating—plasmonic fiber sensor applied to the detection of glyphosate in water. J Lightwave Technol 36(4):863–870

    Article  Google Scholar 

  • Hinman SS, McKeating KS, Cheng Q (2018) Surface plasmon resonance: material and interface design for universal accessibility. Anal Chem 90(1):19–39

    Article  Google Scholar 

  • Hong Y, Huh Y-M, Yoon DS, Yang J (2012) Nanobiosensors based on localized surface Plasmon resonance for biomarker detection. J Nanomater, pp. 759830.

  • Hossain MK, Kitahama Y, Huang GG, Han X, Ozaki Y (2009) Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal Bioanal Chem 394(7):1747–1760

    Article  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  Google Scholar 

  • Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK (2019) Raman techniques: fundamentals and Frontiers. Nanoscale Res Lett 14(1):231.

  • Kaushik BK, Singh L, Singh R, Zhu G, Zhang B, Wang Q, Kumar S (2020) Detection of Collagen-IV using highly reflective metal nanoparticles—immobilized photosensitive optical fiber-based MZI Structure. IEEE Trans NanoBiosci 19(3):477–484

    Article  Google Scholar 

  • Kaushik S, Tiwari UK, Pal SS, Sinha RK (2019) Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets. Biosensors Bioelectronics 126:501–509.

  • Kazuma E, Tatsuma T (2014) Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale 6(4):2397–2405

    Article  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arabian J Chem 12(7):908–931.

  • Kim S-H, Koh K (2006) Chapter 5—Functional dyes for surface plasmon resonance-based sensing system. In: Kim S-H (ed) Functional dyes. Elsevier Science, Amsterdam, pp 185–213.

  • Kim SA, Kim SJ, Moon H, Jun SB (2012) In vivo optical neural recording using fiber-based surface plasmon resonance. Optics Lett 37(4):614–616.

  • Kim J, Jang Y, Kim NJ, Kim H, Yi G-C, Shin Y, Kim MH, Yoon S (2019) Study of chemical enhancement mechanism in non-plasmonic surface enhanced Raman Spectroscopy (SERS). Front Chem 7(582).

  • Kim HM, Hong Jeong D, Lee H-Y, ParkJ-H, Lee S.K (2019) Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance. Opt Laser Technol 114:171–178.

  • Kumar S, Singh R, Kaushik BK, Chen N, Yang QS, Zhang X (2019a) LSPR-based cholesterol biosensor using hollow core fiber structure. IEEE Sensors J 19(17):7399–7406

    Article  Google Scholar 

  • Kumar S, Kaushik BK, Singh R, Chen N-K, Yang QS, Zhang X, Wang W, Zhang B (2019) LSPR-based cholesterol biosensor using a tapered optical fiber structure. Biomed Opt Express 10(5):2150–2160.

  • Kumar S, Singh R, Zhu G, Yang Q, Zhang X, Cheng S, Zhang B, Kaushik BK, Liu F (2019) Development of uric acid biosensor biosensor using gold nanoparticles and graphene oxide functionalized micro-ball fiber sensor probe. IEEE Trans NanoBiosci, pp 1–1.

  • Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li J-F, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam J-M, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay L-L, Thomas KG, Tian Z-Q, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM (2020) Present and future of surface-enhanced Raman scattering. ACS Nano 14(1):28–117.

  • Lao J, Han L, Wu Z, Zhang X, Huang Y, Tang Y, Guo T (2019) Gold nanoparticle-functionalized surface plasmon resonance optical fiber biosensor: in situ detection of thrombin with 1 n·M detection limit. J Lightwave Technol 37(11):2748–2755

    Article  Google Scholar 

  • Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 140(2):386–406

    Article  Google Scholar 

  • Li L, Liang Y, Guang J, Cui W, Zhang X, Masson J-F, Peng W (2017) Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor. Optics Express 25(22):26950–26957.

  • Liu Y, Ma Y (2020) One-dimensional plasmonic sensors. Front Phys 8(312).

  • Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W (2015) Surface plasmon resonance biosensor based on smart phone platforms. Sci Reports 5(1):12864.

  • Lorian V (1988) Differences between in vitro and in vivo studies. Antimicrobial Agents Cchemotherapy 32(10):1600–1601

    Article  Google Scholar 

  • Lovitt CJ, Shelper TB, Avery VM (2014) Advanced cell culture techniques for cancer drug discovery. Biology 3(2):345–367

    Article  Google Scholar 

  • Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X, Ye Z (2020a) Wearable health devices in health care: narrative systematic review. JMIR Mhealth Uhealth 8(11):e18907–e18907

    Article  Google Scholar 

  • Lu L, Zhang J, Xie Y, Gao F, Xu S, Wu X, Ye Z (2020) Wearable health devices in health care: narrative systematic review. JMIR Mhealth Uhealth 8(11):e18907.

  • Luan J, Morrissey JJ, Wang Z, Derami HG, Liu, KK, Cao S, Jiang Q, Wang C, Kharasch ED, Naik RR, Singamaneni S (2018) Add-on plasmonic patch as a universal fluorescence enhancer. Light: Sci Appl 7(1):29.

  • Luo Z, Wang Y, Xu Y, Wang X, Huang Z, Chen J, Li Y, Duan Y (2019) Ultrasensitive U-shaped fiber optic LSPR cytosensing for label-free and in situ evaluation of cell surface N-glycan expression. Sensors Actuators B Chem 284:582–588.

  • McDermott JE, Wang J, Mitchell H, Webb-Robertson B-J, Hafen R, Ramey J, Rodland KD (2013) Challenges in Biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn 7(1):37–51

    Article  Google Scholar 

  • McMahon JM, Schatz GC, Gray SK (2013) Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 15(15):5415–5423

    Article  Google Scholar 

  • Mondal B, Zeng S (2020) Recent advances in Surface Plasmon Resonance for biosensing applications and future prospects.

  • Mudgal N, Yupapin P, Ali J, Singh G (2020) BaTiO3-graphene-affinity layer–based surface plasmon resonance (SPR) biosensor for pseudomonas bacterial detection. Plasmonics 15(5):1221–1229.

  • Nam D, Cha J, Park K (2021) Next-generation wearable biosensors developed with flexible bio-chips. Micromachines 12:64.

  • Noah NM (2020) Design and synthesis of nanostructured materials for sensor applications. J Nanomater, 8855321.

  • Nylander C, Liedberg B, Lind T (1982) Gas detection by means of surface plasmon resonance. Sensors Actuators 3:79–88.

  • Omar NAS, Fen YW, Abdullah J, Chik CENCE, Mahdi MA (2018) Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein. Sensing Bio-Sensing Res 20:16–21.

  • Oyarzún MP, Tapia-Arellano A, Cabrera P, Jara-Guajardo P, Kogan MJ (2021) Plasmonic nanoparticles as optical sensing probes for the detection of Alzheimer's disease. Sensors (Basel) 21(6).

  • Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK (2021) Artificial intelligence in drug discovery and development. Drug Discovery Today 26(1):80–93

    Article  Google Scholar 

  • Peltomaa R, Glahn-Martínez B, Benito-Peña E, Moreno-Bondi MC (2018) Optical biosensors for label-free detection of small molecules. Sensors (basel, Switzerland) 18(12):4126

    Article  Google Scholar 

  • Rahman MM, Ghoshal UC, Ragunath K, Jenkins G, Rahman M, Edwards C, Hasan M, Taylor-Robinson SD (2020) Biomedical research in developing countries: Opportunities, methods, and challenges. Indian J Gastroenterol 39(3):292–302.

  • Ribaut C, Loyez M, Larrieu J-C, Chevineau S, Lambert P, Remmelink M, Wattiez R, Caucheteur C (2017) “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis. Biosensors Bioelectronics 92:449–456.

  • Semwal V, Shrivastav AM, Verma R, Gupta BD (2016) Surface plasmon resonance based fiber optic ethanol sensor using layers of silver/silicon/hydrogel entrapped with ADH/NAD. Sensors Actuators B Chem 230:485–492.

  • Semwal V, Gupta BD (2018) LSPR- and SPR-Based fiber-optic cholesterol sensor using immobilization of cholesterol oxidase over silver nanoparticles coated graphene oxide nanosheets. IEEE Sensors J 18(3):1039–1046

    Article  Google Scholar 

  • Seshadri DR, Li RT, Voos JE, Rowbottom JR, Alfes CM, Zorman CA, Drummond CK (2019) Wearable sensors for monitoring the physiological and biochemical profile of the athlete. npj Digital Med 2(1):72.

  • Seshadri DR, Davies EV, Harlow ER, Hsu JJ, Knighton SC, Walker TA, Voos JE, Drummond CK (2020) Wearable sensors for COVID-19: a call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments. Front Digital Health 2(8).

  • Shi S, Ang EL, Zhao H (2018) In vivo biosensors: mechanisms, development, and applications. J Ind Microbiol Biotechnol 45(7):491–516

    Article  Google Scholar 

  • Shpacovitch V, Hergenröder R (2020) Surface Plasmon Resonance (SPR)-based biosensors as instruments with high versatility and sensitivity. Sensors (basel, Switzerland) 20(11):3010

    Article  Google Scholar 

  • Shrivastav AM, Cvelbar U, Abdulhalim I (2021) A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 4(1):70.

  • Shvalya V, Filipič G, Zavašnik J, Abdulhalim I, Cvelbar U (2020) Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Appl Phys Rev 7(3):031307.

  • Singh L, Zhu G, Singh R, Zhang B, Wang W, Kaushik BK, Kumar S (2020a) Gold nanoparticles and uricase functionalized tapered fiber sensor for uric acid detection. IEEE Sensors J 20(1):219–226

    Article  Google Scholar 

  • Singh L, Singh R, Zhang B, Kaushik BK, Kumar S (2020b) Localized surface plasmon resonance based hetero-core optical fiber sensor structure for the detection of L-Cysteine. IEEE Trans Nanotechnol 19:201–208

    Article  Google Scholar 

  • Singh R, Kumar S, Liu F-Z, Shuang C, Zhang B, Jha R, Kaushik BK (2020) Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosensors Bioelectronics 168:112557.

  • Singhal J, Verma S, Kumar S, Mehrotra D (2021) Recent advances in nano-bio-sensing fabrication technology for the detection of oral cancer. Molecular Biotechnol 63(5):339–362.

  • Slomovic S, Pardee K, Collins JJ (2015) Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci 112(47):14429

    Article  Google Scholar 

  • Srichan C, Ekpanyapong M, Horprathum M, Eiamchai P, Nuntawong N, Phokharatkul D, Danvirutai P, Bohez E, Wisitsoraat A, Tuantranont A (2016) Highly-sensitive surface-enhanced raman spectroscopy (SERS)-based Chemical Sensor using 3D Graphene foam decorated with silver nanoparticles as SERS substrate. Sci Reports 6(1): 23733.

  • Šubr M, Praus P, Kuzminova A, Kočišová E, Kylián O, Sureau F, Procházka M, Štěpánek J (2020) Magnetron-sputtered polytetrafluoroethylene-stabilized silver nanoisland surface for surface-enhanced fluorescence. Nanomaterials 10(4).

  • Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun (Cambridge, England), vol. 48:8999–9010.

  • Vandamme TF (2014) Use of rodents as models of human diseases. J Pharmacy Bioallied Sc 6(1):2–9

    Article  Google Scholar 

  • Wang D, Loo JFC, Chen J, Yam Y, Chen S-C, He H, Kong SK, Ho HP (2019) Recent advances in surface plasmon resonance imaging sensors. Sensors (basel, Switzerland) 19(6):1266

    Article  Google Scholar 

  • Wang X, Ma M, Wang X, Wang S (2020) Surface plasmon resonance sensors for concentration and reaction kinetic detections.

  • Wang Y, Zhao C, Wang J, Luo X, Xie L, Zhan S, Kim J, Wang X, Liu X, Ying Y (2021) Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci Adv 7(4):eabe4553.

  • Wang F, Zhang Y, Liu Z, Yuan H, Wu Z, Zhou D, Jing Z, Peng W (2018) Highly sensitive glucose detection using Au Nanoparticles based fiber optic SPR sensor. 26th Int Conf Opt Fiber Sens 1364(10):1–8

    Google Scholar 

  • Wei C, Feng, Yuan L (2020) Resolution-improved SPR sensor with a rotational modulation method. Appl Op 59(9):2883–2891.

  • White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16(2):1020–1028

    Article  Google Scholar 

  • Wu C-W, Chiang C-Y, Chen C-H, Chiang C-S, Wang C-T, Chau L-K (2016) Self-referencing fiber optic particle plasmon resonance sensing system for real-time biological monitoring. Talanta 146:291–298.

  • Xing D, Chen J, Yang J, Heng BC, Ge Z, Lin J (2016) Perspectives on animal models utilized for the research and development of regenerative therapies for articular cartilage. Curr Molecular Biol Reports 2(2):90–100.

  • Yamamoto YS, Ozaki Y, Itoh T (2014) Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering. J Photochem Photobiol C Photochem Rev 21:81–104.

  • Yang Q, Zhang X, Kumar S, Singh R, Zhang B, Bai C, Pu X (2020) Development of glucose sensor using gold nanoparticles and glucose-oxidase functionalized tapered fiber structure. Plasmonics 15(3):841–848.

  • Yang Q, Zhu G, Singh L, Wang Y, Singh R, Zhang B, Zhang X, Kumar S (2020) Highly sensitive and selective sensor probe using glucose oxidase/gold nanoparticles/graphene oxide functionalized tapered optical fiber structure for detection of glucose. Optik 208:164536.

  • Yesudasu V, Pradhan HS, Pandya RJ (2021) Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon 7(3):e06321.

  • Yuan H, Ji W, Chu S, Qian S, Wang F, MassonJ-F, Han X, Peng W (2018) Fiber-optic surface plasmon resonance glucose sensor enhanced with phenylboronic acid modified Au nanoparticles. Biosensors Bioelectronics 117: 637–643.

  • Zeni L, Perri C, Cennamo N, Arcadio F, D’Agostino G, Salmona M, Beeg M, Gobbi M (2020) A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Sci Reports 10(1):11154.

  • Zhang X, Wu Z, Liu F, Fu Q, Chen X, Xu J, Zhang Z, Huang Y, Tang Y, Guo T, Albert J (2018a) Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings. Biomed Optics Express 9(4):1735–1744

    Article  Google Scholar 

  • Zhang J, Kolhatkar G, Ruediger A (2021) Localized surface plasmon resonance shift and its application in scanning near-field optical microscopy. J Mater Chem C 9(22):6960–6969

    Article  Google Scholar 

  • Zhang C, Ren J, Zhou J, Cui M, Li N, Han B, Chen Q (2018) Facile fabrication of a 3,4,9,10-perylene tetracarboxylic acid functionalized graphene-multiwalled carbon nanotube-gold nanoparticle nanocomposite for highly sensitive and selective electrochemical detection of dopamine. Analyst 143(13):3075–3084.

  • Zhang NMY, Qi M, Wang Z, Wang Z, Chen M, Li K, Shum P, Wei L (2019) One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors.Sensors Actuators B Chem 286:429–436

  • Zhao X, Tsao Y-C, Lee F-J, Tsai W-H, Wang C-H, Chuang T-L, Wu M-S, Lin C-W (2016) Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies. J Virol Methods 233:15–22.

  • Zhou C, Zou H, Li M, Sun C, Ren D, Li Y-X (2018) “Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosensors Bioelectronics 117.

  • Zhou Z, Wang Z, Tang Y, Gao J, Zhang CC, Wang Q (2018) Multi-modal tracking dopamine using a hybrid inorganic-organic silver nanoparticle and its cellular imaging performance. J Luminescence 204:394–400.

  • Zhu J, Qin L, Song S, Zhong J, Lin S (2015) Design of a surface plasmon resonance sensor based on grating connection. Photonic Sensors 5.

  • Zhu G, Agrawal N, Singh R, Kumar S, Zhang B, Saha C, Kumar C (2020) A novel periodically tapered structure-based gold nanoparticles and graphene oxide – Immobilized optical fiber sensor to detect ascorbic acid. Optics Laser Technol 127:106156.

  • Zhu G, Singh L, Wang Y, Singh R, Zhang B, Liu F, Kaushik BK, Kumar S (2020) Tapered optical fiber-based LSPR Biosensor for Ascorbic Acid detection. Photonic Sensors.

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board, India (grant no. TAR/2018/000051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, N., Saxena, R., Singh, L. et al. Recent advancements in plasmonic optical biosensors: a review. ISSS J Micro Smart Syst 11, 31–42 (2022). https://doi.org/10.1007/s41683-021-00079-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41683-021-00079-0

Keywords

Navigation