Skip to main content
Log in

RF MEMS switches, switching networks and phase shifters for microwave to millimeter wave applications

  • Review Paper
  • Published:
ISSS Journal of Micro and Smart Systems Aims and scope Submit manuscript

Abstract

This work presents design, fabrication and measurements of RF MEMS metal-contact switches, switching network and phase shifters. The complete work is broadly divided into three parts. The first part concentrates on the metal-contact switch functionalities in terms of mechanical behaviour, electrical behaviour, transient analysis, linearity, power handling, temperature, S-parameter and reliability. All these switch performances are critically evaluated for developing high-performance and reliable MEMS switch. Different single-pole-multi-throw (SPnT) switching networks are also designed and tested where n varies from two to sixteen. Next part concentrates on the design and development of narrow-band (500 MHz) MEMS digital phase shifters (2- to 5-bit) driven by an electrostatic actuation. Next and last phase of this work deals with a reconfigurable MEMS digital phase shifter using a push–pull-type beam topology. The utility of this beam design is validated and tested on a simple DMTL configuration where 11 push–pull bridges are used in a periodic placement. Finally, a modified version of the push–pull actuator is used to design a frequency reconfigurable 5-bit phase shifter over a wide band of spectrum of 10–25 GHz. The concept of the frequency reconfiguration is clearly mentioned and validated with exhaustive measurement process. In addition, a low-cost module is developed using gold-coated brass material to observe optimum device performance for end-user applications and two phase shifters are tested over large cycles including power handling, temperature stability and qualification testing such as 3-axis vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Barker NS, Rebeiz GM (2000) Optimization of distributed MEMS Transmission line phase shifters—U -band and W-band design. IEEE Trans Microw Theory Tech 48(11):1957–1966

    Article  Google Scholar 

  • Botula A, Joseph A, Slinkman J, Wolf R, He Z-X, Ioannou D, Wagner L (2009) A thinfilm SOI 180 nm CMOS RF switch technology. In: Proceedings of IEEE topical meeting silicon monolithic integrated circuits in RF systems, pp 1–4

  • Chaudhry Q, Bayruns R, Arnold B, Sheehy P (2012) A Linear CMOS SOI SP14T antenna switch for cellular applications. In: IEEE radio frequency integrated circuits symposium, pp 155–158

  • Choi JY, Cho M-K, Baek D, Kim J-G (2013) A 5–20 GHz 5-bit true time delay circuit in 0.18 μm CMOS technology. J Semiconductor Tech Sci 13(3):193–197

    Article  Google Scholar 

  • Dey S, Koul SK (2012) Design and development of a surface micromachined push–pull-type true-time-delay phase shifter on an alumina substrate for Ka-band T/R module application. J Micromech Microeng 22(12):1–20

    Article  Google Scholar 

  • Dey S, Koul SK (2013a) Design and development of a CPW-based 5-bit switched-line phase shifter using inline metal contact MEMS series switches for 17.25 GHz transmit/receive module application. J Micromech Microeng 24(1):24

    Google Scholar 

  • Dey S, Koul SK (2013b) Design and development of miniaturized high isolation MEMS SPDT switch for Ku-band T/R module application. In: 2013 IEEE MTT-S international (IMaRC 2013), Microwave and RF conference, December 14–16, New Delhi, India

  • Dey S, Koul SK (2014a) Design, development and characterization of an x-band 5 bit DMTL phase shifter using an inline MEMS bridge and MAM capacitors. J Micromech Microeng 24(1):095007

    Article  Google Scholar 

  • Dey S, Koul SK (2014b) 10–35 GHz frequency reconfigurable RF MEMS 5-Bit DMTL phase shifter using push–pull actuation based toggle mechanism. In: 2nd microwave and RF conference, 2014 IEEE MTT-S international (IMaRC 2014), December 15–17, Bangalore, India

  • Dey S, Koul SK (2015a) Reliability analysis of Ku-band 5-bit phase shifters using MEMS SP4T and SPDT switches. IEEE Trans Microw Theory Tech 63(12):3997–4012

    Article  Google Scholar 

  • Dey S, Koul SK (2015b) 10–25 GHz frequency reconfigurable MEMS 5-bit phase shifter using push–pull actuator based toggle mechanism. J Micromech Microeng 25(6):19

    Article  Google Scholar 

  • Dey S, Koul SK (2016) Systematic measurement of high isolation DC–20 GHz miniature MEMS SPDT switch. Wiley Microw Opt Technol Lett 58(5):1154–1159

    Article  Google Scholar 

  • Dey S, Parihar MS, Koul SK (2013) Design and development of X-band high isolation switch. In: IEEE international conference on microwaves, communications, antennas and electronic systems (COMCAS). Tel Aviv, Israel

  • Dey S, Koul SK, Poddar AK, Rohde UL (2016) Extensive performance evaluations of RFMEMS single-pole-multi-throw (SP3T to SP14T) switches up to X-band frequency. J Micromech Microeng 27(1):10

    Google Scholar 

  • Dey S, Koul SK, Poddar AK, Rohde UL (2017) Ku-V-band 4-bit MEMS phase shifters using high isolation SP4T switches and DMTL structures. J Micromech Microeng 27(10):105010

    Article  Google Scholar 

  • Dey S, Koul SK, Poddar AK, Rohde UL (2018) Reliable and compact 3- and 4-bit phase shifters using MEMS SP4T and SP8T switches. J Microelectromech Syst 27(1):113–124

    Article  Google Scholar 

  • Erker EG, Nagra AS, Yu L, Periaswamy P, Taylor TR, Speck J, York RA (2000) Monolithic Ka-band phase shifter using voltage tunable BaSrTiO3 parallel plate capacitors. IEEE Microw Guid Wave Lett 10(1):10–12

    Article  Google Scholar 

  • Goins DA, Nelson RD, McKillop (2007) Design of a 20 GHz low loss ohmic contact RF MEMS switch. In IEEE MTT-S international microwave symposium digest, Honolulu, HI, pp 371–374

  • Hayden JS, Rebeiz GM (2002) A low-loss Ka-band distributed MEMS 2-bit phase shifter using metal–air–metal capacitors. In: IEEE MTT-S international microwave symposium digest, Seattle, WA, pp 337–340

  • Hayden JS, Rebeiz GM (2003) Very low loss distributed X-band and Ka-band MEMS phase shifters using metal–air–metal capacitors. IEEE Trans Microw Theory Tech 51(1):309–314

    Article  Google Scholar 

  • Hongjoon K, Kozyrev AB, Karbassi A, Van Der Weide DW (2005) Linear tunable phase shifter using a left-handed transmission line. IEEE Microw Wirel Compon Lett 15(5):366–368

    Article  Google Scholar 

  • http://www.4gamericas.org/files/6514/3930/9262/4G_Americas_5G_Spectrum_Recommendations_White_Paper.pdf

  • https://www.rfmd.com/product-category/switches

  • Hung J-J, Dussopt L, Rebeiz GM (2004) Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates. IEEE Trans Microw Theory Tech 52(2):600–606

    Article  Google Scholar 

  • Kang D-W, Lee HD, Kim C-H, Hong S (2006) Ku-Band MMIC phase shifter using a parallel resonator with 0.18-µm CMOS technology. IEEE Trans Microw Theory Tech 54(1):294–301

    Article  Google Scholar 

  • Kim H-T, Park J-H, Lee S, Kim S, Kim J-M, Kim Y-K, Kwon Y (2002) V-Band 2-b and 4-b low-loss and low-voltage distributed MEMS digital phase shifter using metal–air–metal capacitors. IEEE Trans Microw Theory Tech 50(12):2918–2923

    Article  Google Scholar 

  • Koh K-J, Rebeiz GM (2010) A 6–18 GHz 5-BitActive Phase Shifter. In: IEEE MTT-S international microwave symposium digest, Montreal, Anaheim, CA, pp 792–795

  • Koul SK, Dey S (2013) Radio frequency micro electromechanical system—an Overview. J Smart Struct Syst 2(2):27–75

    Google Scholar 

  • Koul S, Dey S (2014a) RF MEMS true-time-delay phase shifter. In: Vinoy KJ, Ananthasuresh GK, Pratap R, Krupanidhi AB (eds) Micro and smart devices and system. Springer, New Delhi

    Google Scholar 

  • Koul SK, Dey S (2014b) RF MEMS single-pole-multi-throw switching circuit. In: Vinoy KJ, Ananthasuresh GK, Pratap R, Krupanidhi AB (eds) Micro and smart devices and system. Springer, New Delhi

    Google Scholar 

  • Koul SK, Dey S (2017) Reliability modeling of RF MEMS components for microwave to millimeter wave communications. In: IEEE electron devices technology and manufacturing conference (EDTM), Japan

  • Koul SK, Dey S (2018) K-band 4-bit phase shifter using two back to back MEMS SP16T switching networks. J Microelectromech Syst 27(4):643–655

    Article  Google Scholar 

  • Koul SK, Dey S (2019) Radio-frequency micromachined switches, switching networks and phase shifters. CRC Press, Boca Raton. ISBN 978-0-8153-6143-5

    Book  Google Scholar 

  • Koul SK, Dey S, Poddar AK, Rodhe UL (2016a) Ka-band reliable and compact 3-bit TTD phase shifter using MEMS single-pole-eight-throw switching networks. J Micromech Microeng 26:104002

    Article  Google Scholar 

  • Koul SK, Dey S, Poddar AK, Rodhe U (2016b) Ka-Band 3-Bit Compact MEMS Phase Shifter using single-pole-eight-throw switching networks. J. Micromech. Microeng 26(10):104002

    Article  Google Scholar 

  • Koul SK, Dey S, Poddar AK, Rodhe U (2016c) Micromachined switches and phase shifters for transmit/receive module applications. In: 46th IEEE European microwave conference (EuMC-2016), 4–6th Oct, London, UK

  • Kwang-Jin K, Rebeiz GM (2007) 0.13-µm CMOS phase shifters for X-, Ku-, and K-band phased arrays. IEEE J. Solid-State Circuits 42(11):2535–2546

    Article  Google Scholar 

  • Lee S, Park J-H, Kim H-T, Kim J-M, Kim Y-K, Kwon Y (2004) Low-loss analog and digital reflection-type MEMS phase shifters with 1:3 bandwidth. IEEE Trans Microw Theory Tech 52(1):211–219

    Article  Google Scholar 

  • Lee J, Je CH, Kang S, Choi CA (2005) A low-loss single-pole six-throw switch based on compact RF MEMS switches. IEEE Trans Microw Theory Tech 53(11):3335–3344

    Article  Google Scholar 

  • Li G, San HS, Chen XY (2009) Charging and discharging in ion implanted dielectric films used for capacitive radio frequency microelectromechanical systems switch. J Appl Phys 105(12):1245031–1245036

    Google Scholar 

  • Liu AQ, Palei W, Tang M, Alphones A (2008) Single-pole-four-throw switch using high-aspect-ratio lateral switches. Electron Lett 40(18):1281–1282

    Google Scholar 

  • Lucyszyn S (2010) Advanced RF MEMS. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Majumder S, Lampen J, Morrison R, Maciel J (2003) A packaged, high-lifetime ohmic MEMS RF switch. In: IEEE MTT-S international microwave symposium digest, Philadelphia, PA, pp 1935–1938

  • Malczewski A, Eshelman S, Pillans B, Ehmke J, Goldsmith CL (1999) X-Band RF MEMS phase shifters for phased array applications. IEEE Microw Guid Wave Lett 9(12):517–519

    Article  Google Scholar 

  • Min B, Rebeiz GM (2008) Single-ended and differential –band BiCMOS phased array front-ends. IEEE J Solid-State Circuits 43(10):2239–2250

    Article  Google Scholar 

  • Morton MA, Papapolymerou J (2008) A packzaged MEMS-based 5-bit X-band high-pass/low-pass phase shifter. IEEE Trans Microw Theory Tech 56(9):2025–2031

    Article  Google Scholar 

  • Muller S, Scheele P, Weil C, Wittek M, Hock C, Jakoby R (2004) Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals. In: IEEE MTT-S international microwave symposium digest, Fort Worth, TX, USA, pp 1153–1156

  • Nordquist CD, Dyck CW, Kraus GM, Reines IC, Goldsmith CL, Cowan WD, Plut TA, Austin F IV, Finnegan PS, Ballance MH, Sullivan CT (2006) A DC to 10-GHz 6-b RF MEMS time delay circuit. IEEE Microw Wirel Compon Lett 16(5):305–307

    Article  Google Scholar 

  • Park J-H, Kim H-T, Choi W, Kwon Y, Kim Y-K (2002) V-Band reflection-type phase shifters using micromachined CPW coupler and RF switches. IEEE Trans Microw Theory Tech 11(6):808–814

    Google Scholar 

  • Patel CD, Rebeiz GM (2012) A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC-40- GHz applications. IEEE Trans Microw Theory Tech 60(10):3096–3112

    Article  Google Scholar 

  • Pillans B, Coryell L, Malczewski A, Moody C, Morris F, Brown A (2012) Advances in RF MEMS phase shifters from 15 GHz to 35 GHz. In: IEEE MTT-S international microwave symposium digest, Montreal, QC, Canada, pp 1–3

  • Qingjiang C, Li Q, Ziyang Z, Min Q, Tong Y, Yikai S (2003) A tunable broadband photonic RF phase shifter based on a silicon microring resonator. IEEE Photon Technol Lett 21(1):60–62

    Article  Google Scholar 

  • Rebeiz GM (2003) RF MEMS: theory, design and technology. Wiley, New York

    Book  Google Scholar 

  • Rebeiz GM, Theory RFMEMS (2003) Design, and technology. Wiley, Hoboken

    Google Scholar 

  • San HS, Chen XY, Xu P, Li G, Zhan LX (2008) Using metalinsulator-semiconductor capacitor to investigate the charge accumulation in capacitive RF MEMS switches. Appl Phys Lett 93(6):0635061–0635063

    Article  Google Scholar 

  • Schindler MJ, Miller ME (1998) A 3-bit K/Ka band MMIC phase shifter. In: IEEE MTT-S international microwave symposium digest, pp 95–98

  • Tan G-L, Mihailovich R, Hacker J, DeNatale J, Rebeiz GM (2003a) Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T switches. IEEE Trans Microw Theory Tech 51(1):297–304

    Article  Google Scholar 

  • Tan G-L, Mihailovich R, Hacker J, DeNatale J, Rebeiz GM (2003b) 4-bit miniature X-band MEMS phase shifter using switched-LC networks. In: IEEE MTT-S international microwave symposium, Philadelphia, PA, vol 3, pp 1477–1480

  • Taniguchi E, Hieda M, Kurusu H, Funada M, Iyama Y, Takagi T (1999) A Kuband matched embedded-FET phase shifter. In: 29th European microwave conference, Munich, Germany, pp 357–360

  • Topalli K, Civi OA, Demir S, Koc S, Akin T (2008) A monolithic phased array using 3-bit distributed RF MEMS phase shifters. IEEE Trans Microw Theory Tech 56(2):270–277

    Article  Google Scholar 

  • Unlu M, Demir S, Akin T (2013) A 15–40-GHz frequency reconfigurable RF MEMS phase shifter. IEEE Trans Microw Theory Tech 61(8):2397–2402

    Article  Google Scholar 

  • Vähä-Heikkilä T, Van Caekenberghe K, Varis J, Tuovinen J, Rebeiz GM (2007) RF MEMS impedance tuners for 6–24 GHz applications. Int J RF Microw Comput Aided Eng 17(3):265–278

    Article  Google Scholar 

  • Wallace J, Redd H, Furlow R (1999) Low cost MMIC DBS chip sets for phased array applications. In: IEEE MTT-S international microwave symposium digest, Anaheim, CA, pp 677–680

  • Yang H-H, Yahiaoui A, Zareie H, Blondy P, Rebeiz GM (2013) Symmetric and compact single-pole multiple-throw (SP7T, SP11T) RF MEMS switches. J Microelectromech Syst 24(3):685–695

    Article  Google Scholar 

  • Zareie H, Rebeiz GM (2014) Compact high-power SPST and SP4T RF MEMS metal-contact switches. IEEE Trans Microw Theory Tech 61(8):2397–2402

    Google Scholar 

Download references

Acknowledgments

The first two authors would like to express their profound gratitude to Prof. K. N. Bhat, Prof Navakant Bhat and research staff in the Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, for their help in characterizing the devices at their facility. Thanks are also due to Late. Mr. Vedula Kirty, senior general manager of Astra Microwave Product Limited (AMPL), Hyderabad, for helping us during the process of fabrication, mounting of the devices in the test jigs and device reliability characterization. Finally the authors would like to thank National Program on Micro and Smart Systems (NPMASS), Govt. of India for setting up MEMS design lab and RF characterization facilities at CARE, Indian Institute of Technology, Delhi, India, and their generous support that led to the development of the reported phase shifters. We are also thankful to Prof. Ulrich L. Rohde and Dr. Ajay K. Poddar from Synergy Microwave Corp., NJ, USA, for financially supporting a collaborative research project on development of RF MEMS components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukomal Dey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Koul, S.K., Poddar, A.K. et al. RF MEMS switches, switching networks and phase shifters for microwave to millimeter wave applications. ISSS J Micro Smart Syst 9, 33–47 (2020). https://doi.org/10.1007/s41683-020-00051-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41683-020-00051-4

Keywords

Navigation