Skip to main content

Advertisement

Log in

Materials Selection Approaches and Fabrication Methods in RF MEMS Switches

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A state of the art review on Radio Frequency Micro-Electromechanical Systems (RF MEMS) capacitive switches is reported by considering two key aspects: (1) materials selection approaches for improving performance, and (2) fabrication methods used in capacitive MEMS switches. The beam and dielectric materials used in capacitive MEMS switches and the performance achieved through them are reviewed and reported by a rigorous literature survey. Further, materials selection approaches for the beam membrane and the dielectric layer are discussed using Ashby’s methodology, and other associated methods based on it, which uses material indices to evaluate the performance of a switch. Performance indicators for the beam materials selection are the pull-in voltage, RF loss, thermal residual stress, contact resistance, thermal conductivity, and maximum displacement, whereas the hold-down voltage, dielectric charging, leakage current, heat dissipation, capacitance ratio, and stability are performance indicators in dielectric materials selection. MEMS switch fabrication can be achieved through bulk micromachining processes and surface micromachining processes, but the surface micromachining process has been preferred over the last few decades. The fabricated MEMS switch components can be integrated using a monolithic complementary metal oxide semiconductor–micro-electromechanical systems (CMOS-MEMS) process for the realization of applications in sensors, resonators, amplifiers, phase shifters, and MEMS satellite vehicles for space applications. CMOS-MEMS monolithic fabrication is discussed further with the help of fabrication process involved and the process technology. The TSMC-CMOS 0.35 \(\upmu \hbox {m}\) technology is one of the leading technologies in CMOS-MEMS fabrication and is mainly used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.E. Lysenko, A.V. Tkachenko, O.A. Ezhova, B.G. Konoplev, E.A. Ryndin, and E.V. Sherova, Electronics 9(2), 207 (2020).

    Article  CAS  Google Scholar 

  2. J.H. Sinsky and C.R. Westgate, In 1997 IEEE MTT-S International Microwave Symposium Digest, volume 2, pages 647–650. IEEE, (1997).

  3. G.M. Rebeiz and J.B. Muldavin, IEEE Microwave Mag. 2(4), 59 (2001).

    Article  Google Scholar 

  4. E.R. Brown, IEEE Trans. Microwave Theory Tech. 46(11), 1868 (1998).

    Article  CAS  Google Scholar 

  5. A. Domurat-Linde, K. Lang, and E. Hoene, In International Symposium on Electromagnetic Compatibility-EMC EUROPE, pages 1–6. IEEE, (2012).

  6. K. Boonying, C. Phongcharoenpanich, and S. Kosulvit, In The 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE), pages 1–4. IEEE, (2014).

  7. M.N.A. Aadit, S.G. Kirtania, F. Afrin, Md K. Alam, and Q. Deen Mohd Khosru, Different types of field-effect transistors: theory and applications, pages 45–64, (2017).

  8. H. Liu, S. Datta and V. Narayanan, In International symposium on low power Electronics and Design (ISLPED), pages 145–150. IEEE, (2013).

  9. R. Negra, T.D. Chu, M. Helaoui, S. Boumaiza, G.M. Hegazi, and F.M. Ghannouchi, In 2007 IEEE/MTT-S International Microwave Symposium, pages 795–798. IEEE, (2007).

  10. W. Saito, T. Domon, I. Omura, M. Kuraguchi, Y. Takada, K. Tsuda, and M. Yamaguchi, IEEE Electron. Device Lett. 27(5), 326 (2006).

    Article  CAS  Google Scholar 

  11. A. Kundu, S. Sethi, N.C. Mondal, B. Gupta, S.K. Lahiri, and H. Saha, Microelectron. J. 41(5), 257 (2010).

  12. D. Mercier, K. Van Caekenberghe, and G.M. Rebeiz, In IEEE MTT-S International Microwave Symposium Digest, 2005., pages 4–pp. IEEE, (2005).

  13. Y. Liu, Y. Bey, and X. Liu, IEEE Trans. Microw. Theory Tech. 65(9), 3188 (2017).

    Article  Google Scholar 

  14. S. Shekhar, K.J. Vinoy, and G.K. Ananthasuresh. J. Micromech. Microeng. 28(7), 075012 (2018).

    Article  Google Scholar 

  15. M. Angira, D. Bansal, P. Kumar, K. Mehta, and K. Rangra, Superlattices Microstruct. 133, 106204 (2019).

    Article  CAS  Google Scholar 

  16. L. Narayana Thalluri, K. Guha, K. Srinivasa Rao, G. Venkata Hari Prasad, K. Girija Sravani, K.S.R. Sastry, A. Raju Kanakala, and P. Bose Babu. Microsyst.Technol. 1 (2020).

  17. S.S. Tan, C.Y. Liu, L.K. Yeh, Y.H. Chiu, and K.Y.J. Hsu. J. Micromech. Microeng. 21(3), 035005 (2011).

  18. M. Angira, Trans. Electr. Electron. Mater. 20(1), 52 (2019).

    Article  Google Scholar 

  19. J.Y. Park, G.H. Kim, K.W. Chung, and J.U. Bu. Sensors Actuators A: Phys., 89(1-2), 88 (2001).

  20. R. Ramadoss, S. Lee, Y.C. Lee, V.M. Bright, and K.C. Gupta, IEEE Trans. Adv. Packag. 26(3), 248 (2003).

    Article  CAS  Google Scholar 

  21. A.B. Yu, A.Q. Liu, J. Oberhammer, Q.X. Zhang, and H.M. Hosseini, J. Micromech. Microeng. 17(10), 2024 (2007).

    Article  CAS  Google Scholar 

  22. M. Fernández-Bolaños, J. Perruisseau-Carrier, P. Dainesi, and A.M. Ionescu, Microelectron. Eng. 85(5–6), 1039 (2008).

    Article  Google Scholar 

  23. X.J. He, Z.Q. Lv, B. Liu, and Z.H. Li, Sens. Actuators, A 188, 342 (2012).

    Article  CAS  Google Scholar 

  24. A. Persano, F. Quaranta, G. Capoccia, E. Proietti, A. Lucibello, R. Marcelli, A. Bagolini, J. Iannacci, A. Taurino, and P. Siciliano, Microsyst. Technol. 22(7), 1741 (2016).

    Article  CAS  Google Scholar 

  25. S. Shekhar, K.J. Vinoy, and G.K. Ananthasuresh, J. Microelectromech. Syst. 26(3), 643 (2017).

    Article  CAS  Google Scholar 

  26. M.F. Ashby and D. Cebon. Le Journal de Physique IV 3(C7), C7–1 (1993).

  27. Z. Mehmood, I. Haneef, and F. Udrea, Mater. Design 157, 412 (2018).

    Article  Google Scholar 

  28. Y. Mafinejad, A. Kouzani, K. Mafinezhad, and I. Mashad, J. Microelectron. Electron. Compon. Mater. 43(2), 85 (2013).

    Google Scholar 

  29. V.B. Sawant, S.S. Mohite, and L.N. Cheulkar. Materials Today: Proc., 5(4), 10704 (2018).

  30. D. Deshmukh and M. Angira, Trans. Electr. Electron. Mater. 20(3), 181 (2019).

    Article  Google Scholar 

  31. R. Raman, T. Shanmuganantham, and D. Sindhanaiselvi, Mater. Today: Proc. 5(1), 1890 (2018).

    Google Scholar 

  32. Kurmendra and R. Kumar, Trans. Electr. Electron. Mater. 20(4), 299 (2019).

    Article  Google Scholar 

  33. S. Girish Gandhi, I. Govardhani, S. Kumar Kotamraju, K. Ch Sri Kavya, D. Prathyusha, K. Srinivasa Rao, and K. Girija Sravani, Trans. Electr. Electron. Mater., 21(1):83, (2020).

  34. J.G Noel, IET Circuits Devices Syst. 10(2):156, (2016).

  35. D.B. Jang and S.J. Hong, Trans. Electr. Electron. Mater. 19(1), 21 (2018).

    Article  Google Scholar 

  36. A. Kumar Sharma and N. Gupta, Prog. Electromagn. Res. 31, 147 (2012).

    Article  Google Scholar 

  37. A. Paldas and N. Gupta, Int. J. Mech. Prod. Eng. 1(3), 7 (2013).

    Google Scholar 

  38. U.S. Arathy and R. Resmi, In 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pages 57–61. IEEE, (2015).

  39. M. Krishna Bonthu and A. Kumar Sharma, Microsyst. Technol. 24(4), 1803 (2018).

    Article  Google Scholar 

  40. J. Li, T. Mattila, and V. Vuorinen, Handbook of silicon based mems materials and technologies, (2015).

  41. I.E. Lysenko, A.V. Tkachenko, E.V. Sherova, and A.V. Nikitin. Electronics 7(12), 415 (2018).

  42. GM Rebeiz. Rf mems theory, (2003).

  43. P. Patra and M. Angira, Trans. Electr. Electron. Mater. 1–8 (2019).

  44. Q. Hongwei, Micromachines 7(1), 14 (2016).

  45. M. Ádám, T. Mohácsy, P. Jónás, C. Dücső, É. Vázsonyi, and I. Bársony, Sensors Actuators A: Phys. 142(1), 192 (2008).

  46. K.E Bean, IEEE Trans. Electron Devices 25(10), 1185 (1978).

  47. D.B. Lee, J. Appl. Phys. 40(11), 4569 (1969).

    Article  CAS  Google Scholar 

  48. M. Shikida, K. Sato, K. Tokoro, and D. Uchikawa, Sens. Actuators, A 80(2), 179 (2000).

    Article  CAS  Google Scholar 

  49. J.O. Dennis, F. Ahmad, and H.B.M. Khir, Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies, page 226, (2013).

  50. L. Hsu, T. Dalton, L. Clevenger, C. Radens, K. Wong, and C.-C. Yang, January 17 2008. US Patent App. 11/776,835.

  51. V. Srivastav, R. Pal, and H.P. Vyas, Optoelectron. Rev. 13(3), 197 (2005).

    CAS  Google Scholar 

  52. F. Yongqing, D. Hejun, and J. Miao, J. Mater. Process. Technol. 132(1–3), 73 (2003).

  53. H. Jaafar, K.S. Beh, N. Amziah Md Yunus, W. Zuha Wan Hasan, S. Shafie, and O. Sidek, Microsyst. Technol. 20(12), 2109 (2014).

  54. M. Kim, D. Knoefler, E. Quarles, U. Jakob, and D. Bazopoulou, Transl. Med. Aging, (2020).

  55. J.A. Liddle, H.A. Huggins, S.D. Berger, J.M. Gibson, G. Weber, R. Kola, and C.W. Jurgensen, J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. Process. Measur. Phenomena 9(6), 3000 (1991).

    Article  CAS  Google Scholar 

  56. K. Srinivasa Rao and T. Lakshmi Narayana. Review on Analytical Design, Simulation, Fabrication, Characterization, and Packaging Aspects of Micro Electro Mechanical Switches for Radio Frequency Applications, (2016).

  57. R. Koch, Surf. Coat. Technol. 204(12–13), 1973 (2010).

    Article  CAS  Google Scholar 

  58. K.W. Rhee, M.C. Peckerar, C.R.K. Marrian, and E.A. Dobisz, January 25 2000. US Patent 6,017,658.

  59. S. Ikhmayies, J. Energy Syst. 3(3), 111 (2019).

    Article  Google Scholar 

  60. O. Abegunde, E.T. Akinlabi, and O.P. Oladijo, Appl. Surface Sci. 146323 (2020).

  61. B. Eun Jang and S.J. Hong, Trans. Electr. Electron. Mater. 19(1), 1 (2018).

    Article  Google Scholar 

  62. S.P. Pacheco, L.P.B. Katehi, and C.T.-C. Nguyen, In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 00CH37017), volume 1, pages 165–168. IEEE, (2000).

  63. I.-J. Cho, and E. Yoon, J. Micromech. Microeng. 20(3), 035028 (2010).

  64. M. Li, J. Zhao, Z. You, and G. Zhao, Solid-State Electron. 127, 32 (2017).

    Article  CAS  Google Scholar 

  65. Y. Mafinejad, H.R. Ansari, and S. Khosroabadi, Microsyst. Technol. 26(4), 1253 (2020).

    Article  CAS  Google Scholar 

  66. S. Gopalakrishnan, A. DasGupta, and D.R. Nai,. J. Micromech. Microeng., 27(9), 095013 (2017).

  67. T. Kageyama, K. Shinozaki, L. Zhang, L. Jian, H. Takaki, and S.-S. Lee, Micro Nano Syst. Lett. 6(1), 1 (2018).

  68. K. Han, X. Guo, S. Smith, Z. Deng, and W. Li, Micromachines 9(8), 390 (2018).

  69. J. Iannacci, Sens. Actuators, A 279, 624 (2018).

    Article  CAS  Google Scholar 

  70. S. Shekhar and K.J. Vinoy, ISSS J. Micro Smart Syst. 8(1), 31 (2019).

  71. R.A. Moghadam, H. Saffari, and J. Koohsorkhi, Microsystem Technologies, pages 1–8, (2020).

  72. I.V. Uvarov, R.V. Selyukov, and V.V. Naumov, Microsystem Technologies, pages 1–10, (2020).

  73. M. Koutsoureli, G. Stavrinidis, D. Birmpiliotis, G. Konstantinidis, and G. Papaioannou, Microelectron. Eng. 223, 111230 (2020).

    Article  CAS  Google Scholar 

  74. J.E. Ramstad, Cmos-mems integration, (2006).

  75. M.Kousuke, M. Moriyama, M. Esashi, and S. Tanaka, In 2012 IEEE 25th international conference on micro electro mechanical systems (MEMS), pages 1153–1156. IEEE, (2012).

  76. M. Narducci, L. Yu-Chia, W. Fang, and J. Tsai, J. Micromech. Microeng. 23(5), 055007 (2013).

    Article  CAS  Google Scholar 

  77. W.-C. Chen, W. Fang, S.-S. Li, J. Micromech. Microeng. 21(6), 065012 (2011).

  78. S.-H. Liao, W.-J. Chen, and M.S.-C. Lu. IEEE Sensors J., 13(5), 1401 (2013).

  79. K.S. Ahmed, Abdel, Aziz, M. Bakri-Kassem, and R.R. Mansour, J. Micromech. Microeng. 30(4), 045006 (2020).

    Article  Google Scholar 

  80. J.-R. Liu, L. Shih-Chuan, C.-P. Tsai, and W.-C. Li, J. Micromech. Microeng. 28(6), 065001 (2018).

  81. S Tolunay Wipf, A. Göritz, M. Wietstruck, M. Cirillo, C. Wipf, W. Winkler, and M. Kaynak, In 2017 47th European Microwave Conference (EuMC), pages 320–323. IEEE, (2017).

  82. J.L. Muñoz-Gamarra, A. Uranga, and N. Barniol, Micromachines 7(2), 30 (2016).

    Article  Google Scholar 

  83. Cheng-Yang. Lin, Cheng-Chih. Hsu, Ching-Liang. Dai, Micromachines 6(11), 1645 (2015).

  84. Sara S Attar, Sormeh Setoodeh, Raafat R Mansour, and Deepnarayan Gupta. IEEE transactions on microwave theory and techniques, 62(7):1437 (2014).

  85. Guanghai Ding. Intelligent cmos control of rf mems capacitive switches. (2013).

  86. Siamak Fouladi, Frédéric Domingue, and Raafat Mansour. In 2012 IEEE/MTT-S International Microwave Symposium Digest, pages 1–3. IEEE, (2012).

  87. M. Kaynak, M. Wietstruck, R. Scholz, J. Drews, R. Barth, K.E. Ehwald, A. Fox, U. Haak, D. Knoll, and F. Kornd, In 2010 International Electron Devices Meeting, pages 36–5. IEEE, (2010).

Download references

Acknowledgments

Authors would like to give their sincere thanks to the editor, anonymous reviwers and journal staffs for thier kind suggestions and advice in improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurmendra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmendra, Kumar, R. Materials Selection Approaches and Fabrication Methods in RF MEMS Switches. J. Electron. Mater. 50, 3149–3168 (2021). https://doi.org/10.1007/s11664-021-08817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08817-8

Keywords

Navigation