Skip to main content
Log in

Copper Nitroprusside-Based Electrochemical Sensor for Detection of Tryptophan

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

This work presents a novel electrochemical approach for detecting tryptophan through its interaction with copper nitroprusside, which is synthesized using a simple chemical co-precipitation method. The utilization of the reduction reaction inherent to copper nitroprusside effectively exhibits high selectivity against common interferences present in urine, such as melatonin, lactate, cytosine, cytidine, urea, ascorbic acid, creatine, creatinine, tyrosine, glycine, alanine, arginine, and lysine. The method demonstrates two linear ranges: 0.0–0.15 mmol/L and 0.15–2.0 mmol/L with the sensitivities of 119.7 ± 0.2 µA/(mmol/L) and 9.9 ± 0.4 µA/(mmol/L), respectively. The limit of detection (3SB/m) was determined to be 5.5 µmol/L. Application of the sensor in synthetic urine yielded the recovery of 103% ± 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Mullaliu A, Sougrati M-T, Louvain N, Aquilanti G, Doublet M-L, Stievano L, Giorgetti M. The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials? Electrochim Acta. 2017;257:364–71.

    Article  CAS  Google Scholar 

  2. Balmaseda J, Reguera E, Gomez A, Roque J, Vazquez C, Autie M. On the microporous nature of transition metal nitroprussides. J Phys Chem B. 2003;107(41):11360–9.

    Article  CAS  Google Scholar 

  3. Gómez A, Rodríguez-Hernández J, Reguera E. Unique coordination in metal nitroprussides: the structure of Cu[Fe(CN)5NO]⋅2H2O and Cu[Fe(CN)5NO]. J Chem Crystallogr. 2004;34:893–903.

    Article  Google Scholar 

  4. Mullaliu A, Aquilanti G, Plaisier JR, Giorgetti M. Cross-investigation on copper nitroprusside: combining XRD and XAS for in-depth structural insights. Condensed Matter. 2021;6(3):27.

    Article  CAS  Google Scholar 

  5. Carapuça HM, Filipe OM, Simão JE, Fogg AG. Electrochemical studies of nitroprusside in the presence of copper (II): formation of Cu (I) reduced nitroprusside species. J Electroanal Chem. 2000;480(1–2):84–93.

    Article  Google Scholar 

  6. Mullaliu A, Stievano L, Aquilanti G, Plaisier JR, Cristol S, Giorgetti M. The peculiar redox mechanism of copper nitroprusside disclosed by a multi-technique approach. Radiat Phys Chem. 2020;175: 108336.

    Article  CAS  Google Scholar 

  7. Mullaliu A, Aquilanti G, Stievano L, Conti P, Plaisier JR, Cristol S, Giorgetti M. Beyond the oxygen redox strategy in designing cathode material for batteries: Dynamics of a prussian blue-like cathode revealed by operando X-ray diffraction and X-ray absorption fine structure and by a theoretical approach. J Phys Chem C. 2019;123(14):8588–98.

    Article  CAS  Google Scholar 

  8. Reguera L, Balmaseda J, Krap C, Reguera E. Hydrogen storage in porous transition metals nitroprussides. J Phys Chem C. 2008;112(28):10490–501.

    Article  CAS  Google Scholar 

  9. Roque-Malherbe R, Lozano C, Polanco R, Marquez F, Lugo F, Hernandez-Maldonado A, Primera-Pedrozo J. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph. J Solid State Chem. 2011;184(5):1236–44.

    Article  CAS  Google Scholar 

  10. Rahut S, Patra SK, Basu JK. Surfactant assisted self assembly of novel ultrathin Cu [Fe (CN)5NO] nanosheets for enhanced electrocatalytic oxygen evolution: effect of nanosheet thickness. Electrochim Acta. 2018;265:202–8.

    Article  CAS  Google Scholar 

  11. Carapuca HM, Simao JE, Fogg AG. Electrochemistry of the nitroprusside ion. From mechanistic studies to electrochemical analysis. Analyst. 1996;121(12):1801–4.

    Article  CAS  Google Scholar 

  12. Jankhunthod S, Moonla C, Watwiangkham A, Suthirakun S, Siritanon T, Wannapaiboon S, Ngamchuea K. Understanding electrochemical and structural properties of copper hexacyanoferrate: application in hydrogen peroxide analysis. Electrochim Acta. 2021;394: 139147.

    Article  CAS  Google Scholar 

  13. Wright AM, Hayton TW. Recent developments in late metal nitrosyl chemistry. Comments Inorg Chem. 2012;33(5–6):207–48.

    Article  CAS  Google Scholar 

  14. Kałużna-Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59(1):72–88.

    Article  PubMed  Google Scholar 

  15. Comai S, Bertazzo A, Brughera M, Crotti S. Tryptophan in health and disease. Adv Clin Chem. 2020;95:165–218.

    Article  CAS  PubMed  Google Scholar 

  16. Liu X-H, Zhai X-Y. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie. 2021;182:131–9.

    Article  CAS  PubMed  Google Scholar 

  17. Widner B, Leblhuber F, Walli J, Tilz G, Demel U, Fuchs D. Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm. 2000;107:343–53.

    Article  CAS  PubMed  Google Scholar 

  18. Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, Guillemin GJ, Brew BJ. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology. 2017;112:373–88.

    Article  CAS  PubMed  Google Scholar 

  19. Fernstrom JD. A perspective on the safety of supplemental tryptophan based on its metabolic fates. J Nutr. 2016;146(12):2601S-2608S.

    Article  CAS  PubMed  Google Scholar 

  20. Oketch-Rabah HA, Roe AL, Gurley BJ, Griffiths JC, Giancaspro GI. The importance of quality specifications in safety assessments of amino acids: the cases of L-tryptophan and L-citrulline. J Nutr. 2016;146(12):2643S-2651S.

    Article  CAS  PubMed  Google Scholar 

  21. Nasimi H, Madsen JS, Zedan AH, Malmendal A, Osther PJS, Alatraktchi FAA. Electrochemical sensors for screening of tyrosine and tryptophan as biomarkers for diseases: a narrative review. Microchem J. 2023;5:108737.

    Article  Google Scholar 

  22. Rattanaumpa T, Maensiri S, Ngamchuea K. Microporous carbon in the selective electro-oxidation of molecular biomarkers: uric acid, ascorbic acid, and dopamine. RSC Adv. 2022;12(29):18709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ngamchuea K, Lin C, Batchelor-McAuley C, Compton RG. Supported microwires for electroanalysis: sensitive amperometric detection of reduced glutathione. Anal Chem. 2017;89(6):3780–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ravel B, Newville M. Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat. 2005;12(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang G, Wang J, Yang Y, Zhang G, Liu Y, Lin H, Zhang G, Li Y, Fan X. Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule. Biosens Bioelectron. 2016;85:62–7.

    Article  CAS  PubMed  Google Scholar 

  26. Asakura D, Okubo M, Zhou H, Amemiya K, Okada K, Glans P-A, Jenkins CA, Arenholz E, Guo J. Anisotropic charge-transfer effects in the asymmetric Fe(CN)5NO octahedron of sodium nitroprusside: a soft X-ray absorption spectroscopy study. Phys Chem Chem Phys. 2014;16(15):7031–6.

    Article  PubMed  Google Scholar 

  27. Giorgetti M, Berrettoni M, Filipponi A, Kulesza PJ, Marassi R. Evidence of four-body contributions in the EXAFS spectrum of Na2Co[Fe(CN)6]. Chem Phys Lett. 1997;275(1–2):108–12.

    Article  CAS  Google Scholar 

  28. Carapuça HM, Simao JE, Fogg AG. Comproportionation and disproportionation reactions in the electrochemical reduction of nitroprusside at a hanging mercury drop electrode in acidic solution. J Electroanal Chem. 1998;455(1–2):93–105.

    Article  Google Scholar 

  29. Moonla C, Jankhunthod S, Ngamchuea K. Copper hexacyanoferrate as a novel electrode material in electrochemical detection of cumene hydroperoxide. J Electrochem Soc. 2021;168(11): 116507.

    Article  CAS  Google Scholar 

  30. Kadhim M, Gamaj MI. Estimation of the diffusion coefficient and hydrodynamic radius (stokes radius) for inorganic ions in solution depending on molar conductivity as electro-analytical technique-a review. J Chem Rev. 2020;2(3):182–8.

    CAS  Google Scholar 

  31. Cano A, Rodríguez-Hernández J, Shchukarev A, Reguera E. Intercalation of pyrazine in layered copper nitroprusside: synthesis, crystal structure and XPS study. J Solid State Chem. 2019;273:1–10.

    Article  CAS  Google Scholar 

  32. Dalirirad S, Steckl AJ. Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal Biochem. 2020;596: 113637.

    Article  CAS  PubMed  Google Scholar 

  33. Abellán-Llobregat A, González-Gaitán C, Vidal L, Canals A, Morallon E. Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosens Bioelectron. 2018;109:123–31.

    Article  PubMed  Google Scholar 

  34. Abellán-Llobregat A, Vidal L, Rodríguez-Amaro R, Berenguer-Murcia Á, Canals A, Morallon E. Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples. Electrochim Acta. 2017;227:275–84.

    Article  Google Scholar 

  35. Khan MI, Zhang Q, Wang Y, Saud S, Liu W, Liu S, Kong H, Wang C, Uzzaman A, Xiao H. Portable electrophoresis titration chip model for sensing of uric acid in urine and blood by moving reaction boundary. Sens Actuators, B Chem. 2019;286:9–15.

    Article  CAS  Google Scholar 

  36. Kałuzna-Czaplinska J, Michalska M, Rynkowski J. Determination of tryptophan in urine of autistic and healthy children by gas chromatography/mass spectrometry. Med Sci Monit. 2010;16(10):488–92.

    Google Scholar 

  37. Mao S, Li W, Long Y, Tu Y, Deng A. Sensitive electrochemical sensor of tryptophan based on Ag@ C core–shell nanocomposite modified glassy carbon electrode. Anal Chim Acta. 2012;738:35–40.

    Article  CAS  PubMed  Google Scholar 

  38. Xia X, Zheng Z, Zhang Y, Zhao X, Wang C. Synthesis of Ag-MoS2/chitosan nanocomposite and its application for catalytic oxidation of tryptophan. Sens Actuators, B Chem. 2014;192:42–50.

    Article  CAS  Google Scholar 

  39. Tığ GA. Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and l-tryptophan based on Ag nanoparticles and poly (l-arginine)-graphene oxide composite. J Electroanal Chem. 2017;807:19–28.

    Article  Google Scholar 

  40. Kooshki M, Abdollahi H, Bozorgzadeh S, Haghighi B. Second-order data obtained from differential pulse voltammetry: determination of tryptophan at a gold nanoparticles decorated multiwalled carbon nanotube modified glassy carbon electrode. Electrochim Acta. 2011;56(24):8618–24.

    Article  CAS  Google Scholar 

  41. Khan MZH, Liu X, Tang Y, Zhu J, Hu W, Liu X. A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly (L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Microchim Acta. 2018;185:1–10.

    Article  Google Scholar 

  42. Rezaei F, Ashraf N, Zohuri GH. A smart electrochemical sensor based upon hydrophilic core–shell molecularly imprinted polymer for determination of L-tryptophan. Microchem J. 2023;185: 108260.

    Article  CAS  Google Scholar 

  43. Jin G-P, Lin X-Q. The electrochemical behavior and amperometric determination of tyrosine and tryptophan at a glassy carbon electrode modified with butyrylcholine. Electrochem Commun. 2004;6(5):454–60.

    Article  CAS  Google Scholar 

  44. Wang C, Zou X, Zhao X, Wang Q, Tan J, Yuan R. Cu-nanoparticles incorporated overoxidized-poly (3-amino-5-mercapto-1, 2, 4-triazole) film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J Electroanal Chem. 2015;741:36–41.

    Article  CAS  Google Scholar 

  45. He Q, Tian Y, Wu Y, Liu J, Li G, Deng P, Chen D. Electrochemical sensor for rapid and sensitive detection of tryptophan by a Cu2O nanoparticles-coated reduced graphene oxide nanocomposite. Biomolecules. 2019;9(5):176.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu J, Dong S, He Q, Yang S, Xie M, Deng P, Xia Y, Li G. Facile preparation of Fe3O4/C nanocomposite and its application for cost-effective and sensitive detection of tryptophan. Biomolecules. 2019;9(6):245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y-J, Yang L-L, Ni L, Xiong J-M, He J-Y, Zhou L-D, Luo L, Zhang Q-H, Yuan C-S. Constructing electrochemical sensor using molecular-imprinted polysaccharide for rapid identification and determination of L-tryptophan in diet. Food Chem. 2023;425:136486.

    Article  CAS  PubMed  Google Scholar 

  48. Qian J, Yi Y, Zhang D, Zhu G. Electrochemical recognition of tryptophan enantiomers using a multi-walled carbon nanotube@ polydopamine composite loaded with copper (II). Microchim Acta. 2019;186:1–9.

    Article  Google Scholar 

  49. Yang F, Xie Q, Zhang H, Yu S, Zhang X, Shen Y. Simultaneous determination of ascorbic acid, uric acid, tryptophan and adenine using carbon-supported NiCoO2 nanoparticles. Sens Actuators, B Chem. 2015;210:232–40.

    Article  CAS  Google Scholar 

  50. Wang C, Xiong Z, Sun P, Wang R, Zhao X, Wang Q. Facile longitudinal unzipped multiwalled carbon nanotubes incorporated overoxidized poly (p-aminophenol) modified electrode for sensitive simultaneous determination of dopamine, uric acid and tryptophan. J Electroanal Chem. 2017;801:395–402.

    Article  CAS  Google Scholar 

  51. Karabozhikova V, Tsakova V, Lete C, Marin M, Lupu S. Poly (3, 4-ethylenedioxythiophene)-modified electrodes for tryptophan voltammetric sensing. J Electroanal Chem. 2019;848: 113309.

    Article  CAS  Google Scholar 

  52. Khoshnevisan K, Torabi F, Baharifar H, Sajjadi-Jazi SM, Afjeh MS, Faridbod F, Larijani B, Khorramizadeh MR. Determination of the biomarker L-tryptophan level in diabetic and normal human serum based on an electrochemical sensing method using reduced graphene oxide/gold nanoparticles/18-crown-6. Anal Bioanal Chem. 2020;412:3615–27.

    Article  CAS  PubMed  Google Scholar 

  53. Yang X, Niu X, Mo Z, Guo R, Liu N, Zhao P, Liu Z. Perylene-functionalized graphene sheets modified with chitosan for voltammetric discrimination of tryptophan enantiomers. Microchim Acta. 2019;186:1–12.

    Article  Google Scholar 

  54. Zhou S, Deng Z, Wu Z, Xie M, Tian Y, Wu Y, Liu J, Li G, He Q. Ta2O5/rGO nanocomposite modified electrodes for detection of tryptophan through electrochemical route. Nanomaterials. 2019;9(6):811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research has received funding support from (i) Suranaree University of Technology (SUT) and (ii) the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (PMU-B) (B13F660067). Ngamchuea K. acknowledges funding from (i) Suranaree University of Technology (SUT), (ii) Thailand Science Research and Innovation (TSRI), and (iii) National Science, Research and Innovation Fund (NSRF, NRIIS number 189603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamonwad Ngamchuea.

Ethics declarations

Conflict of Interest

The authors declare no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunon, P., Rattanaumpa, T., Phakhunthod, K. et al. Copper Nitroprusside-Based Electrochemical Sensor for Detection of Tryptophan. J. Anal. Test. 7, 405–415 (2023). https://doi.org/10.1007/s41664-023-00280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00280-0

Keywords

Navigation