Skip to main content
Log in

Study on the Photolysis Route of Nano 2,2ʹ,4,4ʹ,6,6ʹ–Hexanitrostillbene by Vibrational Spectroscopy

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The understanding of the photolysis process of 2,2ʹ,4,4ʹ,6,6ʹ–hexanitrostillbene (HNS, an insensitive high-energy explosive) is very important not only for enhancing the detonation performance but also for its lifetime prediction. In this work, UV–Vis light-induced photolysis of nano HNS was studied by different spectroscopic methods. Nano HNS was found to be sensitive to UV–Vis lights at 365 and 470 nm. The photolysis route of nano HNS was mostly the same as its bulk counterpart, which was likely to be the combination of the isomerization of –NO2 to –ONO and the breaking of the C–N bond in Ar–NO2 (Ar = Aromatic ring). In addition, the possible mechanism of UV–Vis-induced visible color change was explored for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zepp RG, Cline DM. Rates of direct photolysis in aquatic environment. Environ Sci Technol. 1977;11:359–66.

    Article  CAS  Google Scholar 

  2. Soltani T, Entezari MH. Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation. J Mol Catal A. 2013;377:197–203.

    Article  CAS  Google Scholar 

  3. Donner E, Kosjek T, Qualmann S, Kusk KO, Heath E, Revitt DM, Ledin A, Andersen HR. Ecotoxicity of carbamazepine and its UV photolysis transformation products. Sci Total Environ. 2013;443:870–6.

    Article  CAS  Google Scholar 

  4. Luo S, Wei Z, Spinney R, Zhang Z, Dionysiou DD, Gao L, Chai L, Wang D, Xiao R. UV direct photolysis of sulfamethoxazole and ibuprofen: an experimental and modelling study. J Hazard Mater. 2018;343:132–9.

    Article  CAS  Google Scholar 

  5. Yi Z, Wang J, Tang Q, Jiang T. Photolysis of sulfamethazine using UV irradiation in an aqueous medium. RSC Adv. 2018;8:1427–35.

    Article  CAS  Google Scholar 

  6. Farag HK, Aboelenin RMM, Fathy NA. Photodegradation of methyl orange dye by ZnO loaded onto carbon xerogels composites. Asia-Pac J Chem Eng. 2017;12:4–12.

    Article  CAS  Google Scholar 

  7. Baena-Nogueras RM, González-Mazo E, Lara-Martín PA. Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation. Sci Total Environ. 2017;590:643–54.

    Article  Google Scholar 

  8. Chunmao L, Junze M, Yong Z. Study on effects of cyclodextrins on the photolysis of dissolved anthracene by fluorometry. Luminescence. 2005;20:261–5.

    Article  Google Scholar 

  9. Diaw PA, Mbaye OMA, Thiaré DD, Oturan N, Gaye-Seye MD, Coly A, Jeune BL, Giamarchi P, Oturan MA, Aaron JJ. Combination of photoinduced fluorescence and GC-MS for elucidating the photodegradation mechanisms of diflubenzuron and fenuron pesticides. Luminescence. 2019;34:465–71.

    Article  CAS  Google Scholar 

  10. Williams DL, Timmons JC, Woodyard J, Rainwater K, Richardson B, Lightfoot J, Burgess C. UV-induced degradation rates of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). J Phys Chem A. 2003;107:9491–4.

    Article  CAS  Google Scholar 

  11. Chu G, Lu F, Xin J, Xi T, Shui M, He W, Gu Y, Xiong Y, Cheng K, Xu T. Excited-state dynamics and electron transfer process of 1,3,5-triamino-2,4,6-trinitrobenzene. RSC Adv. 2016;6:55560–7.

    Article  CAS  Google Scholar 

  12. Glascoe EA, Zaug JM, Armstrong MR, Crowhurst JC, Grant CD, Fried LE. Nanosecond time-resolved and steady-state infrared studies of photoinduced decomposition of TATB at ambient and elevated pressure. J Phys Chem A. 2009;113L:5881–7.

    Article  Google Scholar 

  13. Chang K, Liu Z, Fang X, Chen H, Men X, Yuan Y, Sun K, Zhang X, Yuan Z, Wu C. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett. 2017;17:4323–9.

    Article  CAS  Google Scholar 

  14. McDonald JW, Schenkel T, Newman MW, Overturf G, Gregg H, Niedermayr TR, Barnes AV, Schneider DHG, Mowat IA, Hamza AV. The effects of radiation on (1,3,5-triamino-2,4,6-trinitrobenzene) TATB studied by time-of-flight secondary ion mass spectrometry. J Energ Mater. 2001;19:101–18.

    Article  CAS  Google Scholar 

  15. Guo YQ, Bhattacharya A, Bernstein ER. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales. J Phys Chem A. 2009;113:85–96.

    Article  CAS  Google Scholar 

  16. Bhattacharya A, Guo YQ, Bernstein ER. Experimental and theoretical exploration of the initial steps in the decomposition of a model nitramine energetic material: dimethylnitramine. J Phys Chem A. 2009;113:811–23.

    Article  CAS  Google Scholar 

  17. Mullen C, Coggiola MJ, Oser H. Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds. J Am Soc Mass Spectr. 2009;20:419–29.

    Article  CAS  Google Scholar 

  18. Britt AD, Moniz WB, Chingas GC, Moore DW, Heller CA, Ko CL. Free radicales of TATB. Propell Explos Pyrot. 1981;6:94–5.

    Article  CAS  Google Scholar 

  19. Williams DL, Timmons JC, Woodyard JD, Rainwater KA, Lightfoot JM, Richardson BR, Burgess CE, Heh JL. UV-induced degradation rates of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). J Phys Chem A. 2003;107:9491–4.

    Article  CAS  Google Scholar 

  20. Greenfield M, Guo YQ, Bernstein ER. Ultrafast photodissociation dynamics of HMX and RDX from their excited electronic states via femtosecond laser pump-probe techniques. Chem Phy Lett. 2006;430:277–81.

    Article  CAS  Google Scholar 

  21. Holle WGV, McWilliams RA. The application of single-pulse nonlinear raman techniques to a liquid photolytic reaction. In: Laser Probes For Combustion Chemistry. Washington: Ameican Chemical Society; 1980:319–27.

    Chapter  Google Scholar 

  22. Rajchenbach C, Jonusauskas G, Rulliere C. Sub-picosecond time-resolved spectroscopy of energetic materials : the nitromethane and nitro-stilbenes. J Phys IV. 1995;5:365–78.

    CAS  Google Scholar 

  23. Wang L, Tuschel D, Asher S. 229 nm UV photochemical degradation of energetic molecules. Proc SPIE. 2011;8018:1–6.

    Google Scholar 

  24. Nelson T, Bjorgaard J, Greenfield M, Bolme C, Brown K, McGrane S, Scharff RJ, Tretiak S. Modeling photochemical dynamics. In: Optically Active Energetic Materials. Louisiana: APS March Meeting; 2017:62.

  25. Kaur J, Arya VP, Kaur G, Gupta YP, Verma MM, Lata P. Determination of solvent contamination and characterization of ultrafine HNS particles after solvent recrystallization. Propell Explos Pyrot. 2010;35:487–93.

    Article  CAS  Google Scholar 

  26. Agrawal JP. Some new high energy materials and their formulations for specialized applications. Propell Explos Pyrot. 2005;30:316–28.

    Article  CAS  Google Scholar 

  27. Viswanath DS, Ghosh TK, Boddu VM. Hexanitrostilbene (HNS). In: Emerging energetic materials: synthesis, physicochemical, and detonation properties. Berlin: Springer; 2018:213–31.

    Chapter  Google Scholar 

  28. Pouretedal HR, Damiri S, Bighamian Z. The non-isothermal gravimetric method for study the thermal decomposition kinetic of HNBB and HNS explosives. Def Technol. 2019;16:251–6.

    Article  Google Scholar 

  29. Sun Y, Xu T, Shu Y, Zhong F. UV-induced photodecomposition of 2, 2′, 4, 4′, 6, 6′-hexanitrostillbene (HNS). Mater Sci-Poland. 2013;31:306–11.

    Article  CAS  Google Scholar 

  30. Shui M, Sun Y, Zhao Z, Cheng K, Xiong Y, Wu Y, Fan W, Yu J, Yan Y, Yang Z, Gu Y, Zhong F, Xu T. Photothermal decomposition of HNS at 532 nm. Optik. 2013;124:6115–8.

    Article  CAS  Google Scholar 

  31. Neyer B, Tomasoski R, Cox L, Stoutenborough T. HNS-IV explosive properties and characterization tests. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics; 2003;5138:1.

  32. Wang J, Huang H, Xu WZ, Zhang YR, Lu B, Xie RZ, Wang P, Yun N. Prefilming twin-fluid nozzle assisted precipitation method for preparing nanocrystalline HNS and its characterization. J Hazard Mater. 2009;162:842–7.

    Article  CAS  Google Scholar 

  33. Giese B, McNaughton D. Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces. J Phys Chem B. 2002;106:101–12.

    Article  CAS  Google Scholar 

  34. Sun Y, Shui M, Xu T, Shu Y, Wang X, Zhao Z, Gu Y. Laser-Induced Decomposition of 2,2 ’,4,4 ’,6,6 ’-Hexanitrostillbene at 263, 527 and 1053 nm. Asian J Chem. 2013;25:4247–50.

    Article  CAS  Google Scholar 

  35. Pace MD. Electron paramagnetic resonance of ultraviolet irradiated HMX single crystals. Mol Cryst Liq Cryst Inc Nonlinear Opt. 1988;156:167–73.

    Article  CAS  Google Scholar 

  36. Irie M. Photo-reactive materials for ultrahigh density optical memory : MITI research and development program on basic technologies for future industries. Amsterdam: Elsevier Science Incorporated; 1994.

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (22006121, 21677117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Huang, Mei-Kun Fan or Guang-Cheng Yang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 169 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Yang, SW., Wang, DM. et al. Study on the Photolysis Route of Nano 2,2ʹ,4,4ʹ,6,6ʹ–Hexanitrostillbene by Vibrational Spectroscopy. J. Anal. Test. 5, 197–202 (2021). https://doi.org/10.1007/s41664-021-00184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00184-x

Keywords

Navigation