Skip to main content
Log in

Investigation on probing explosive nitroaromatic compound vapors using graphyne nanosheet: a first-principle study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We studied the geometric stability of pristine graphyne nanosheet (Gpn-NS) and electronic properties for the possible use of graphyne sheet for the chemical sensor. The center of attention of the work is to probe the nitroaromatic compounds (NACs) at the earlier stage of chemical explosion using Gpn-nanosheet material. The geometric stability of pristine Gpn base material is entrenched with the formation energy and also verified with phonon band structure. The interaction of different NACs such as hexanitrostilbene, M-dinitrobenzene, picric acid, and 2,4,6-trinitrotoluene on Gpn material is studied in connection with the Bader charge transfer, average energy gap changes, adsorption energy, and band gap. Moreover, the adsorption energy of NACs on Gpn-NS varies in the order of − 0.178 to − 0.627 eV. The outcomes of the suggested work infer that Gpn-NS can be used to probe the NAC vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao JX, Ding YH (2010) Theoretical study of noncovalent functionalization of BN nanotubes by various aromatic molecules. Diam Relat Mater 19:1073–1077

    Article  CAS  Google Scholar 

  2. Stoner BR, Brown B, Glass JT (2014) Selected topics on the synthesis, properties and applications of multiwalled carbon nanotubes. Diam Relat Mater 42:49–57

    Article  CAS  PubMed  Google Scholar 

  3. Campos BB, Contreras-Cáceres R, Bandosz TJ, Jiménez-Jiménez J, Rodríguez-Castellón E, Esteves da Silva JCG, Algarra M (2016) Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. Carbon 106:171–178

    Article  CAS  Google Scholar 

  4. Tabrizchi M, Ilbeigi V (2010) Detection of explosives by positive corona discharge ion mobility spectrometry. J Hazard Mater 176:692–696

    Article  CAS  PubMed  Google Scholar 

  5. Moros J, Laserna JJ (2011) New Raman-laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Anal Chem 83:6275–6285

    Article  CAS  PubMed  Google Scholar 

  6. Charles PT, Kusterbeck AW (1999) Trace level detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by microimmunosensor. Biosens Bioelectron 14:387396

    Article  Google Scholar 

  7. Ma Y, Wang S, Wang L (2015) Nanomaterials for luminescence detection of nitroaromatic explosives. TrAC Trends Anal Chem 65:13–21

    Article  CAS  Google Scholar 

  8. Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F (2010) Supersensitive detection of explosives by silicon nanowire arrays. Angew Chem Int Ed 49:6830–6835

    Article  CAS  Google Scholar 

  9. Wang A, Li L, Wang X, Bu H, Zhao M (2014) Graphyne-based carbon allotropes with tunable properties: from Dirac fermion to semiconductor. Diam Relat Mater 41:65–72

    Article  CAS  Google Scholar 

  10. Hernandez SA, Fonseca AF (2017) Anisotropic elastic modulus, high Poisson’s ratio and negative thermal expansion of graphynes and graphdiynes. Diam Relat Mater 77:57–64

    Article  CAS  Google Scholar 

  11. Li Y, Xu L, Liu H, Li Y (2014) Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem Soc Rev 43:2572–2586

    Article  CAS  PubMed  Google Scholar 

  12. Diederich F, Kivala M (2010) All-carbon scaffolds by rational design. Adv Mater 22:803–812

    Article  CAS  PubMed  Google Scholar 

  13. Baughman RH, Eckhardt H, Kertesz M (1987) Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87:6687–6699

    Article  CAS  Google Scholar 

  14. Guo Y, Jiang K, Xu B, Xia Y, Yin J, Liu Z (2012) Remarkable hydrogen storage capacity in Li-decorated graphyne: theoretical predication. J Phys Chem C116:13837

    Google Scholar 

  15. Koo J, Huang B, Lee H, Kim G, Nam J, Kwon Y, Lee H (2014) Tailoring the electronic band gap of graphyne. J Phys Chem C 118:2463–2468

    Article  CAS  Google Scholar 

  16. Majidi R, Karami AR (2014) Adsorption of formaldehyde on graphene and graphyne. Phys E 59:169–173

    Article  CAS  Google Scholar 

  17. Nagarajan V, Dharani S, Chandiramouli R (2018) Density functional studies on the binding of methanol and ethanol molecules to graphyne nanosheet. Comput Theor Chem 1125:86–94

    Article  CAS  Google Scholar 

  18. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2018) First-principles investigation on switching properties of spiropyran and merocyanine grafted graphyne nanotube device. Chem Phys Lett 691:37–43

    Article  CAS  Google Scholar 

  19. Liu L, Chen X, Qiu J, Hao C (2015) New insights into the nitroaromatics-detection mechanism of the luminescent metal–organic framework sensor. Dalton Trans 44:2897

    Article  CAS  PubMed  Google Scholar 

  20. Chen X, Chen B (2015) Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ Sci Technol 49(10):6181–6189

    Article  CAS  PubMed  Google Scholar 

  21. Schnorr JM, van der Zwaag D, Walish JJ, Weizmann Y, Swager TM (2013) Sensory arrays of covalently functionalized single-walled carbon nanotubes for explosive detection. Adv Funct Mater 23:5285–5291

    Article  CAS  Google Scholar 

  22. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Portal DS (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  23. Roman-Perez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102

    Article  CAS  PubMed  Google Scholar 

  24. Nulakani NVR, Subramanian V (2016) A theoretical study on the design, structure and electronic properties of novel forms of graphynes. J Phys Chem C 120(28):15153–15161

    Article  CAS  Google Scholar 

  25. Troullier N, Martins J (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74:613–616

    Article  Google Scholar 

  26. Nagarajan V, Chandiramouli R (2017) Adsorption of NO2 molecules on armchair phosphorene nanosheet for nano sensor applications—a first-principles study. J Mol Graph Model 75:365–374

    Article  CAS  PubMed  Google Scholar 

  27. Bhuvaneswari R, Nagarajan V, Chandiramouli R (2018) Adsorption studies of trimethyl amine and n-butyl amine vapors on stanene nanotube molecular device—a first-principles study. Chem Phys 501:78–85

    Article  CAS  Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5118

    Article  Google Scholar 

  29. Bader R (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York

    Google Scholar 

  30. Kim J, Esler KP, McMinis J, Morales MA, Clark BK, Shulenburger L, Ceperley DM (2012) Hybrid algorithms in quantum Monte Carlo. J Phys Conf Ser 402:012008

    Article  Google Scholar 

  31. Benali A, Shulenburger L, Krogel JT, Zhong X, Kente PRC, Heinonen O (2016) Quantum Monte Carlo analysis of a charge ordered insulating antiferromagnet: the Ti4O7 Magnéli phase. Phys Chem Chem Phys 18:18323–18335

    Article  CAS  PubMed  Google Scholar 

  32. Hood RQ, Kent PRC, Reboredo FA (2012) Diffusion quantum Monte Carlo study of the equation of state and point defects in aluminum. Phys Rev B 85:134109

    Article  CAS  Google Scholar 

  33. Narita N, Nagai S, Suzuki S, Nakao K (1998) Optimized geometries and electronic structures of graphyne and its family. Phys Rev B 58:11009–11014

    Article  CAS  Google Scholar 

  34. Tan J, He X, Zhao M (2012) First-principles study of hydrogenated graphyne and its family: stable configurations and electronic structures. Diam Relat Mater 29:42–47

    Article  CAS  Google Scholar 

  35. Wu P, Du P, Zhang H, Cai C (2015) Graphyne-supported single Fe atom catalysts for CO oxidation. Phys Chem Chem Phys 17(2):1441–1449

    Article  CAS  PubMed  Google Scholar 

  36. Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y (2014) Cohesion energetics of carbon allotropes: quantum Monte Carlo study. J Chem Phys 140:114702

    Article  CAS  PubMed  Google Scholar 

  37. Shin H, Kim J, Lee H, Heinonen O, Benali A, Kwon Y (2017) Nature of interlayer binding and stacking of sp–sp2 hybridized carbon layers: a quantum Monte Carlo study. J Chem Theory Comput 13(11):5639–5646

    Article  CAS  PubMed  Google Scholar 

  38. Bhuvaneswari R, Chandiramouli R (2018) DFT investigation on the adsorption behavior of dimethyl and trimethyl amine molecules on borophene nanotube. Chem Phys Lett 701:34–42

    Article  CAS  Google Scholar 

  39. Zhang S, Hu Y, Hu Z, Cai B, Zeng H (2015) Hydrogenated arsenenes as planar magnet and Dirac material. Appl Phys Lett 107:022102

    Article  CAS  Google Scholar 

  40. Peng Q, Dearden AK, Crean J, Han L, Liu S, Wen X, De S (2014) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol Sci Appl 7:1–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan LD, Zhang LZ, Song BQ, Du SX, Gao HJ (2011) Graphyne- and graphdiyne-based nanoribbons: density functional theory calculations of electronic structures. Appl Phys Lett 98:173102

    Article  CAS  Google Scholar 

  42. Sang N, Zhan C, Cao D (2015) Highly sensitive and selective detection of 2,4,6-trinitrophenol using covalent-organic polymer luminescent probes. J Mater Chem A 3:92–96

    Article  CAS  Google Scholar 

  43. Sohn H, Calhoun RM, Sailor MJ, Trogler WC (2001) Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles. Angew Chem Int Ed 40:2104–2105

    Article  CAS  Google Scholar 

  44. Shan-mugaraju S, Jadhav H, Patil YP, Mukherjee PS (2012) Self-assembly of an octanuclear platinum(II) tetragonal prism from a new pt4 II organometallic star-shaped acceptor and its nitroaromatic sensing study. Inorg Chem 51:13072

    Article  CAS  Google Scholar 

  45. Srimathi U, Nagarajan V, Chandiramouli R (2018) Detection of nucleobases using 2D germanane nanosheet: a first-principles study. Comput Theor Chem 1130:68–76

    Article  CAS  Google Scholar 

  46. Beheshtian J, Noei M, Soleymanabadi H, Peyghan AA (2013) Ammonia monitoring by carbon nitride nanotubes: a density functional study. Thin Solid Films 534:650–654

    Article  CAS  Google Scholar 

  47. Rastegar SF, Peyghan AA, Soleymanabadi H (2015) Ab initio studies of the interaction of formaldehyde with beryllium oxide nanotube. Phys E 68:22–27

    Article  CAS  Google Scholar 

  48. Nagarajan V, Chandiramouli R (2018) Borospherene molecular device for detection of n-butylamine vapors—a DFT study. IEEE Sensors J 18(3):948–955

    CAS  Google Scholar 

  49. Zhang Y, Xu M, Bunes BR, Wu N, Gross DE, Moore JS, Zang L (2015) Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives. ACS Appl Mater Interfaces 7:7471–7475

    Article  CAS  PubMed  Google Scholar 

  50. Chen PC, Sukcharoenchoke S, Ryu K, de Arco LG, Badmaev A, Wang C, Zhou C (2010) 2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv Mater 22:1900–1904

    Article  CAS  PubMed  Google Scholar 

  51. Nagarajan V, Chandiramouli R (2018) Alcohol molecules adsorption on graphane nanosheets—a first-principles investigation. Appl Surf Sci 441:734–743

    Article  CAS  Google Scholar 

  52. Nagarajan V, Chandiramouli R (2018) A novel approach for detection of NO2 and SO2 gas molecules using graphane nanosheet and nanotubes—a density functional application. Diam Relat Mater 85:53–62

    Article  CAS  Google Scholar 

  53. Nagarajan V, Srimathi U, Chandiramouli R (2018) First-principles insights on detection of dimethyl amine and trimethyl amine vapors using graphdiyne nanosheets. Comput Theor Chem 1123:119–127

    Article  CAS  Google Scholar 

  54. Nagarajan V, Chandiramouli R (2018) Investigation of NH3 adsorption behavior on graphdiyne nanosheet and nanotubes: a first-principles study. J Mol Liq 249:24–32

    Article  CAS  Google Scholar 

  55. Nagarajan V, Chandiramouli R (2018) MoSe2 nanosheets for detection of methanol and ethanol vapors: a DFT study. J Mol Graph Model 81:97–105

    Article  CAS  PubMed  Google Scholar 

  56. Prasongkit J, Amorim RG, Chakraborty S, Ahuja R, Scheicher RH, Amornkitbamrung V (2015) Highly sensitive and selective gas detection based on silicene. J Phys Chem C 119:16934–16940

    Article  CAS  Google Scholar 

  57. Ullah H, Shah A-u-H A, Bilal S, Ayub K (2013) DFT study of polyaniline NH3, CO2, and CO gas sensors: comparison with recent experimental data. J Phys Chem C 117:23701–23711

    Article  CAS  Google Scholar 

  58. Kaloni TP, Schreckenbach G, Freund MS (2014) Large enhancement and tunable band gap in silicene by small organic molecule adsorption. J Phys Chem C 118:23361–23367

    Article  CAS  Google Scholar 

  59. Srivastava A, Gupta P, Khan MS, Kanoun MB, Said SG (2018) Electronic and optical properties of functionalized zigzag ZnO nanotubes. J Mol Model 24:48

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the Nano Mission Council (No. SR/NM/NS-1011/2017(G)), Department of Science & Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 3132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, V., Chandiramouli, R. Investigation on probing explosive nitroaromatic compound vapors using graphyne nanosheet: a first-principle study. Struct Chem 30, 657–667 (2019). https://doi.org/10.1007/s11224-018-1212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1212-3

Keywords

Navigation