Skip to main content

Advertisement

Log in

Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Lipidomics is a subfield of metabolic phenotyping that focuses on high-throughput profiling and quantification of lipids. Essential roles of lipidomics in translational and clinical research have emerged, especially over the past decade. Most lipidomic pipelines have been developed using mass spectrometry (MS)-based methods. Because of the complexity of the data, generally, computational demands are much higher in untargeted lipidomic studies. In the current paper, we primarily discussed the recent advances in untargeted liquid chromatography–mass spectrometry-based lipidomics, covering various facets from analytical strategies to functional interpretations. The current practice of tandem MS-based lipid annotation in untargeted lipidomics studies was demonstrated. Notably, we highlighted the essential characteristics of machine learning models, together with a data partitioning strategy, to facilitate appropriate modeling and validation in metabolic phenotyping studies. Critical aspects of data sharing were briefly mentioned. Finally, certain recommendations were suggested toward more standardized and sustainable lipidomics analysis strategies as independent platforms, and as members of the omics family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Meer G, de Kroon AIPM. Lipid map of the mammalian cell. J Cell Sci. 2011;124(1):5. https://doi.org/10.1242/jcs.071233.

    Article  CAS  PubMed  Google Scholar 

  2. O'Donnell VB, Ekroos K, Liebisch G, Wakelam M. Lipidomics: current state of the art in a fast moving field. WIREs Syst Biol Med. 2020;12(1):e1466. https://doi.org/10.1002/wsbm.1466.

    Article  Google Scholar 

  3. Holčapek M, Liebisch G, Ekroos K. Lipidomic analysis. Anal Chem. 2018;90(7):4249–57. https://doi.org/10.1021/acs.analchem.7b05395.

    Article  CAS  PubMed  Google Scholar 

  4. Yang K, Han X. Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci. 2016;41(11):954–69. https://doi.org/10.1016/j.tibs.2016.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nguyen A, Rudge SA, Zhang Q, Wakelam MJO. Using lipidomics analysis to determine signalling and metabolic changes in cells. Curr Opin Biotechnol. 2017;43:96–103. https://doi.org/10.1016/j.copbio.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  6. Lv J, Zhang L, Yan F, Wang X. Clinical lipidomics: a new way to diagnose human diseases. Clin Transl Med. 2018;7(1):12. https://doi.org/10.1186/s40169-018-0190-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang L, Han X, Wang X. Is the clinical lipidomics a potential goldmine? Cell Biol Toxicol. 2018;34(6):421–3. https://doi.org/10.1007/s10565-018-9441-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kohlwein SD. Opinion articles on lipidomics—a critical assessment of the state-of-the-art. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(8):729–30. https://doi.org/10.1016/j.bbalip.2017.05.009.

    Article  CAS  PubMed  Google Scholar 

  9. Cajka T, Fiehn O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal Chem. 2014;61:192–206. https://doi.org/10.1016/j.trac.2014.04.017.

    Article  CAS  Google Scholar 

  10. Stevens VL, Hoover E, Wang Y, Zanetti KA. Pre-analytical factors that affect metabolite stability in human urine, plasma, and serum: a review. Metabolites. 2019;9(8):156. https://doi.org/10.3390/metabo9080156.

    Article  CAS  PubMed Central  Google Scholar 

  11. Bowden JA, Ulmer CZ, Jones CM, Koelmel JP, Yost RA. NIST lipidomics workflow questionnaire: an assessment of community-wide methodologies and perspectives. Metabolomics. 2018;14(5):53. https://doi.org/10.1007/s11306-018-1340-1.

    Article  CAS  PubMed  Google Scholar 

  12. Liebisch G, Ahrends R, Arita M, Arita M, Bowden JA, Ejsing CS, Griffiths WJ, Holčapek M, Köfeler H, Mitchell TW, Wenk MR, Ekroos K. Lipidomics needs more standardization. Nat Metab. 2019;1(8):745–7. https://doi.org/10.1038/s42255-019-0094-z.

    Article  Google Scholar 

  13. Vuckovic D. Improving metabolome coverage and data quality: advancing metabolomics and lipidomics for biomarker discovery. Chem Commun. 2018;54(50):6728–49. https://doi.org/10.1039/C8CC02592D.

    Article  CAS  Google Scholar 

  14. Vale G, Martin SA, Mitsche MA, Thompson BM, Eckert KM, McDonald JG. Three-phase liquid extraction: a simple and fast method for lipidomic workflows. J Lipid Res. 2019;60(3):694–706. https://doi.org/10.1194/jlr.D090795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sostare J, Di Guida R, Kirwan J, Chalal K, Palmer E, Dunn WB, Viant MR. Comparison of modified Matyash method to conventional solvent systems for polar metabolite and lipid extractions. Anal Chim Acta. 2018;1037:301–15. https://doi.org/10.1016/j.aca.2018.03.019.

    Article  CAS  PubMed  Google Scholar 

  16. Löfgren L, Forsberg G-B, Ståhlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep. 2016;6(1):27688. https://doi.org/10.1038/srep27688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Danne-Rasche N, Coman C, Ahrends R. Nano-LC/NSI MS refines lipidomics by enhancing lipid coverage, measurement sensitivity, and linear dynamic range. Anal Chem. 2018;90(13):8093–101. https://doi.org/10.1021/acs.analchem.8b01275.

    Article  CAS  PubMed  Google Scholar 

  18. Vasilopoulou CG, Sulek K, Brunner A-D, Meitei NS, Schweiger-Hufnagel U, Meyer SW, Barsch A, Mann M, Meier F. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat Commun. 2020;11(1):331. https://doi.org/10.1038/s41467-019-14044-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hutchins PD, Russell JD, Coon JJ. Accelerating lipidomic method development through in silico simulation. Anal Chem. 2019;91(15):9698–706. https://doi.org/10.1021/acs.analchem.9b01234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xuan Q, Zheng F, Yu D, Ouyang Y, Zhao X, Hu C, Xu G. Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy. Anal Bioanal Chem. 2020. https://doi.org/10.1007/s00216-020-02632-6.

    Article  PubMed  Google Scholar 

  21. Surowiec I, Johansson E, Stenlund H, Rantapää-Dahlqvist S, Bergström S, Normark J, Trygg J. Quantification of run order effect on chromatography–mass spectrometry profiling data. J Chromatogr A. 2018;1568:229–34. https://doi.org/10.1016/j.chroma.2018.07.019.

    Article  CAS  PubMed  Google Scholar 

  22. Lam SM, Tian H, Shui G. Lipidomics, en route to accurate quantitation. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(8):752–61. https://doi.org/10.1016/j.bbalip.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  23. Cajka T, Smilowitz JT, Fiehn O. Validating quantitative untargeted lipidomics across nine liquid chromatography–high-resolution mass spectrometry platforms. Anal Chem. 2017;89(22):12360–8. https://doi.org/10.1021/acs.analchem.7b03404.

    Article  CAS  PubMed  Google Scholar 

  24. Barupal DK, Fan S, Wancewicz B, Cajka T, Sa M, Showalter MR, Baillie R, Tenenbaum JD, Louie G, Alzheimer’s Disease Neuroimaging Initiative, Alzheimer’s Disease Metabolomics Consortium, Kaddurah-Daouk R, Fiehn O. Generation and quality control of lipidomics data for the alzheimer’s disease neuroimaging initiative cohort. Sci Data. 2018;5(1):180263. https://doi.org/10.1038/sdata.2018.263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kirwan JA, Weber RJM, Broadhurst DI, Viant MR. Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control. Sci Data. 2014;1(1):140012. https://doi.org/10.1038/sdata.2014.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lange M, Fedorova M. Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST® SRM® 1950 metabolites in human plasma. Anal Bioanal Chem. 2020. https://doi.org/10.1007/s00216-020-02576-x.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tague ED, Woodall BM, Harp JR, Farmer AT, Fozo EM, Campagna SR. Expanding lipidomics coverage: effective ultra performance liquid chromatography-high resolution mass spectrometer methods for detection and quantitation of cardiolipin, phosphatidylglycerol, and lysyl-phosphatidylglycerol. Metabolomics. 2019;15(4):53. https://doi.org/10.1007/s11306-019-1512-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem. 2020;412(10):2191–209. https://doi.org/10.1007/s00216-019-02241-y.

    Article  CAS  PubMed  Google Scholar 

  29. Tsugawa H, Ikeda K, Arita M. The importance of bioinformatics for connecting data-driven lipidomics and biological insights. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(8):762–5. https://doi.org/10.1016/j.bbalip.2017.05.006.

    Article  CAS  PubMed  Google Scholar 

  30. Kind T, Liu K-H, Lee DY, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10(8):755–8. https://doi.org/10.1038/nmeth.2551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35(suppl_2):W606–W612612. https://doi.org/10.1093/nar/gkm324.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6. https://doi.org/10.1038/nmeth.3393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koelmel JP, Kroeger NM, Ulmer CZ, Bowden JA, Patterson RE, Cochran JA, Beecher WWC, Garrett TJ, Yost RA. LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinform. 2017;18(1):331. https://doi.org/10.1186/s12859-017-1744-3.

    Article  CAS  Google Scholar 

  34. Alcoriza-Balaguer MI, García-Cañaveras JC, López A, Conde I, Juan O, Carretero J, Lahoz A. LipidMS: an R package for lipid annotation in untargeted liquid chromatography-data independent acquisition-mass spectrometry lipidomics. Anal Chem. 2019;91(1):836–45. https://doi.org/10.1021/acs.analchem.8b03409.

    Article  CAS  PubMed  Google Scholar 

  35. Hutchins PD, Russell JD, Coon JJ. LipiDex: an integrated software package for high-confidence lipid identification. Cell Syst. 2018;6(5):621–5.e5. https://doi.org/10.1016/j.cels.2018.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koelmel PJ, Li X, Stow MS, Sartain JM, Murali A, Kemperman R, Tsugawa H, Takahashi M, Vasiliou V, Bowden JA, Yost RA, Garrett TJ, Kitagawa N. Lipid annotator: towards accurate annotation in non-targeted liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) lipidomics using a rapid and user-friendly software. Metabolites. 2020;10:3. https://doi.org/10.3390/metabo10030101.

    Article  CAS  Google Scholar 

  37. Hartler J, Triebl A, Ziegl A, Trötzmüller M, Rechberger GN, Zeleznik OA, Zierler KA, Torta F, Cazenave-Gassiot A, Wenk MR, Fauland A, Wheelock CE, Armando AM, Quehenberger O, Zhang Q, Wakelam MJO, Haemmerle G, Spener F, Köfeler HC, Thallinger GG. Deciphering lipid structures based on platform-independent decision rules. Nat Methods. 2017;14(12):1171–4. https://doi.org/10.1038/nmeth.4470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fernandez-Lopez M, Gil-de-la-Fuente A, Godzien J, Ruperez FJ, Barbas C, Otero A. LAS: a lipid annotation service capable of explaining the annotations it generates. Comput Struct Biotechnol J. 2019;17:1113–22. https://doi.org/10.1016/j.csbj.2019.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liebisch G, Vizcaíno JA, Köfeler H, Trötzmüller M, Griffiths WJ, Schmitz G, Spener F, Wakelam MJO. Shorthand notation for lipid structures derived from mass spectrometry. J Lipid Res. 2013;54(6):1523–30. https://doi.org/10.1194/jlr.M033506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pauling JK, Hermansson M, Hartler J, Christiansen K, Gallego SF, Peng B, Ahrends R, Ejsing CS. Proposal for a common nomenclature for fragment ions in mass spectra of lipids. PLoS ONE. 2017;12(11):e0188394. https://doi.org/10.1371/journal.pone.0188394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koelmel JP, Ulmer CZ, Jones CM, Yost RA, Bowden JA. Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(8):766–70. https://doi.org/10.1016/j.bbalip.2017.02.016.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng X, Jiang X, Tam KY, Li G, Zheng J, Zhang H. Sphingolipidomic analysis of C. elegans reveals development- and environment-dependent metabolic features. Int J Biol Sci. 2019;15(13):2897–910. https://doi.org/10.7150/ijbs.30499.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kang YP, Yoon J-H, Long NP, Koo G-B, Noh H-J, Oh S-J, Lee SB, Kim HM, Hong JY, Lee WJ, Lee SJ, Hong S-S, Kwon SW, Kim Y-S. Spheroid-induced epithelial-mesenchymal transition provokes global alterations of breast cancer lipidome: a multi-layered omics analysis. Front Oncol. 2019;9:145. https://doi.org/10.3389/fonc.2019.00145.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee D-K, Long NP, Jung J, Kim TJ, Na E, Kang YP, Kwon SW, Jang J. Integrative lipidomic and transcriptomic analysis of X-linked adrenoleukodystrophy reveals distinct lipidome signatures between adrenomyeloneuropathy and childhood cerebral adrenoleukodystrophy. Biochem Biophys Res Commun. 2019;508(2):563–9. https://doi.org/10.1016/j.bbrc.2018.11.123.

    Article  CAS  PubMed  Google Scholar 

  45. Ni Z, Fedorova M. LipidLynxX: lipid annotations converter for large scale lipidomics and epilipidomics datasets. bioRxiv. 2020. https://doi.org/10.1101/2020.04.09.033894.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu L, Wang X, Jiao Y, Liu X. Assessment of potential false positives via orbitrap-based untargeted lipidomics from rat tissues. Talanta. 2018;178:287–93. https://doi.org/10.1016/j.talanta.2017.09.046.

    Article  CAS  PubMed  Google Scholar 

  47. Gathungu RM, Larrea P, Sniatynski MJ, Marur VR, Bowden JA, Koelmel JP, Starke-Reed P, Hubbard VS, Kristal BS. Optimization of electrospray ionization source parameters for lipidomics to reduce misannotation of in-source fragments as precursor ions. Anal Chem. 2018;90(22):13523–32. https://doi.org/10.1021/acs.analchem.8b03436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Criscuolo A, Zeller M, Fedorova M. Evaluation of lipid in-source fragmentation on different orbitrap-based mass spectrometers. J Am Soc Mass Spectrom. 2020;31(2):463–6. https://doi.org/10.1021/jasms.9b00061.

    Article  CAS  PubMed  Google Scholar 

  49. Forest A, Ruiz M, Bouchard B, Boucher G, Gingras O, Daneault C, Frayne IR, Rhainds D, The iGenoMed Consortium, The NIDDK IBD Genetics Consortium, Tardif J-C, Rioux JD, Rosiers CD. Comprehensive and reproducible untargeted lipidomic workflow using LC-QTOF validated for human plasma analysis. J Proteome Res. 2018;17(11):3657–70. https://doi.org/10.1021/acs.jproteome.8b00270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng Y, Chen B, Yu Q, Li L. Identification of double bond position isomers in unsaturated lipids by m-CPBA epoxidation and mass spectrometry fragmentation. Anal Chem. 2019;91(3):1791–5. https://doi.org/10.1021/acs.analchem.8b04905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rampler E, Criscuolo A, Zeller M, El Abiead Y, Schoeny H, Hermann G, Sokol E, Cook K, Peake DA, Delanghe B, Koellensperger G. A novel lipidomics workflow for improved human plasma identification and quantification using RPLC-MSn methods and isotope dilution strategies. Anal Chem. 2018;90(11):6494–501. https://doi.org/10.1021/acs.analchem.7b05382.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang W, Shang B, Ouyang Z, Xia Y. Enhanced phospholipid isomer analysis by online photochemical derivatization and RPLC-MS. Anal Chem. 2020. https://doi.org/10.1021/acs.analchem.0c00690.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, Li Q, Hou X, Xu G. Development of a high coverage pseudotargeted lipidomics method based on ultra-high performance liquid chromatography–mass spectrometry. Anal Chem. 2018;90(12):7608–16. https://doi.org/10.1021/acs.analchem.8b01331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88(1):524–45. https://doi.org/10.1021/acs.analchem.5b04491.

    Article  CAS  PubMed  Google Scholar 

  55. Blaženović I, Kind T, Ji J, Fiehn O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites. 2018;8(2):31.

    Article  PubMed Central  Google Scholar 

  56. Zhou Z, Tu J, Xiong X, Shen X, Zhu ZJ. LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility–mass spectrometry-based lipidomics. Anal Chem. 2017;89(17):9559–666. https://doi.org/10.1021/acs.analchem.7b02625.

    Article  CAS  PubMed  Google Scholar 

  57. González-Riano C, Dudzik D, Garcia A, Gil-de-la-Fuente A, Gradillas A, Godzien J, López-Gonzálvez A, Rey-Stolle F, Rojo D, Ruperez FJ, Saiz J, Barbas C. Recent developments along the analytical process for metabolomics workflows. Anal Chem. 2020;92(1):203–26. https://doi.org/10.1021/acs.analchem.9b04553.

    Article  CAS  PubMed  Google Scholar 

  58. Di Guida R, Engel J, Allwood JW, Weber RJM, Jones MR, Sommer U, Viant MR, Dunn WB. Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics. 2016;12(5):93. https://doi.org/10.1007/s11306-016-1030-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goh WWB, Wang W, Wong L. Why batch effects matter in omics data, and how to avoid them. Trends Biotechnol. 2017;35(6):498–507. https://doi.org/10.1016/j.tibtech.2017.02.012.

    Article  CAS  PubMed  Google Scholar 

  60. Li B, Tang J, Yang Q, Li S, Cui X, Li Y, Chen Y, Xue W, Li X, Zhu F. NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Res. 2017;45(W1):W162–W170170. https://doi.org/10.1093/nar/gkx449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hastie T, Tibshirani R, Friedman J. Overview of supervised learning. The elements of statistical learning: data mining, inference, and prediction. New York: Springer; 2009. p. 9–41.

    Book  Google Scholar 

  62. Posma JM. Chapter 9—multivariate statistical methods for metabolic phenotyping. In: Lindon JC, Nicholson JK, Holmes E, editors. The handbook of metabolic phenotyping. Oxford: Elsevier; 2019. p. 261–308.

    Chapter  Google Scholar 

  63. Mendez KM, Broadhurst DI, Reinke SN. The application of artificial neural networks in metabolomics: a historical perspective. Metabolomics. 2019;15(11):142. https://doi.org/10.1007/s11306-019-1608-0.

    Article  CAS  PubMed  Google Scholar 

  64. Long NP, Yoon SJ, Anh NH, Nghi TD, Lim DK, Hong YJ, Hong S-S, Kwon SW. A systematic review on metabolomics-based diagnostic biomarker discovery and validation in pancreatic cancer. Metabolomics. 2018;14(8):109. https://doi.org/10.1007/s11306-018-1404-2.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao X, Niu L, Clerici C, Russo R, Byrd M, Setchell KDR. Data analysis of MS-based clinical lipidomics studies with crossover design: a tutorial mini-review of statistical methods. Clin Mass Spectrom. 2019;13:5–17. https://doi.org/10.1016/j.clinms.2019.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smilde AK, Westerhuis JA, Hoefsloot HCJ, Bijlsma S, Rubingh CM, Vis DJ, Jellema RH, Pijl H, Roelfsema F, Van Der Greef J. Dynamic metabolomic data analysis: a tutorial review. Metabolomics. 2010;6(1):3–17. https://doi.org/10.1007/s11306-009-0191-1.

    Article  CAS  PubMed  Google Scholar 

  67. Beirnaert C, Peeters L, Meysman P, Bittremieux W, Foubert K, Custers D, Van der Auwera A, Cuykx M, Pieters L, Covaci A, Laukens K. Using expert driven machine learning to enhance dynamic metabolomics data analysis. Metabolites. 2019;9(3):54.

    Article  CAS  PubMed Central  Google Scholar 

  68. Playdon MC, Joshi AD, Tabung FK, Cheng S, Henglin M, Kim A, Lin T, van Roekel EH, Huang J, Krumsiek J, Wang Y, Mathé E, Temprosa M, Moore S, Chawes B, Eliassen AH, Gsur A, Gunter MJ, Harada S, Langenberg C, Oresic M, Perng W, Seow WJ, Zeleznik QA. Metabolomics analytics workflow for epidemiological research: perspectives from the consortium of metabolomics studies (COMETS). Metabolites. 2019;9(7):145. https://doi.org/10.3390/metabo9070145.

    Article  CAS  PubMed Central  Google Scholar 

  69. Acevedo A, Durán C, Ciucci S, Gerl M, Cannistraci CV. LIPEA: lipid pathway enrichment analysis. bioRxiv. 2018. https://doi.org/10.1101/274969.

    Article  Google Scholar 

  70. Molenaar MR, Jeucken A, Wassenaar TA, van de Lest CHA, Brouwers JF, Helms JB. LION/web: a web-based ontology enrichment tool for lipidomic data analysis. GigaScience. 2019;8:6. https://doi.org/10.1093/gigascience/giz061.

    Article  CAS  Google Scholar 

  71. Kuo TC, Tseng YJ. LipidPedia: a comprehensive lipid knowledgebase. Bioinformatics. 2018;34(17):2982–7. https://doi.org/10.1093/bioinformatics/bty213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR guiding principles for scientific data management and stewardship. Scientific Data. 2016;3(1):160018. doi:10.1038/sdata.2016.18

  73. Conesa A, Beck S. Making multi-omics data accessible to researchers. Sci Data. 2019;6(1):251. https://doi.org/10.1038/s41597-019-0258-4.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rocca-Serra P, Sansone SA. Experiment design driven FAIRification of omics data matrices, an exemplar. Sci Data. 2019;6(1):271. https://doi.org/10.1038/s41597-019-0286-0.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Piwowar HA, Vision TJ. Data reuse and the open data citation advantage. PeerJ. 2013;1:e175. https://doi.org/10.7717/peerj.175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liebisch G, Ekroos K, Hermansson M, Ejsing CS. Reporting of lipidomics data should be standardized. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(8):747–51. https://doi.org/10.1016/j.bbalip.2017.02.013.

    Article  CAS  PubMed  Google Scholar 

  77. Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A, Fiehn O, Higashi R, Nair KS, Sumner S, Subramaniam S. Metabolomics workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res. 2015;44(D1):D463–D470470. https://doi.org/10.1093/nar/gkv1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltrán A, Sansone S-A, Griffin JL, Steinbeck C. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2012;41(D1):D781–D786786. https://doi.org/10.1093/nar/gks1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ara T, Enomoto M, Arita M, Ikeda C, Kera K, Yamada M, Nishioka T, Ikeda T, Nihei Y, Shibata D, Kanaya S, Sakurai N. Metabolonote: a Wiki-based database for managing hierarchical metadata of metabolome analyses. Front Bioeng Biotechnol. 2015;3:38. https://doi.org/10.3389/fbioe.2015.00038.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Stephenson DJ, Hoeferlin LA, Chalfant CE. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res. 2017;189:13–29. https://doi.org/10.1016/j.trsl.2017.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hyötyläinen T, Orešič M. Analytical lipidomics in metabolic and clinical research. Trends Endocrinol Metab. 2015;26(12):671–3. https://doi.org/10.1016/j.tem.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  82. German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics. 2005;1(1):3–9. https://doi.org/10.1007/s11306-005-1102-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14(6):72. https://doi.org/10.1007/s11306-018-1367-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beger RD, Dunn WB, Bandukwala A, Bethan B, Broadhurst D, Clish CB, Dasari S, Derr L, Evans A, Fischer S, Flynn T, Hartung T, Herrington D, Higashi R, Hsu P-C, Jones C, Kachman M, Karuso H, Kruppa G, Lippa K, Maruvada P, Mosley J, Ntai I, O’Donovan C, Playdon M, Raftery D, Shaughnessy D, Souza A, Spaeder T, Spalholz B, Tayyari F, Ubhi B, Verma M, Walk T, Wilson I, Witkin K, Bearden DW, Zanetti KA. Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics. 2019;15(1):4. https://doi.org/10.1007/s11306-018-1460-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Viant MR, Ebbels TMD, Beger RD, Ekman DR, Epps DJT, Kamp H, Leonards PE, Loizou GD, MacRae JI, Van Ravenzwaay B, Rocca-Serra P, Salek RM, Walk T, Weber RJM. Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nat Commun. 2019;10(1):3041. https://doi.org/10.1038/s41467-019-10900-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jonasdottir HS, Brouwers H, Toes REM, Ioan-Facsinay A, Giera M. Effects of anticoagulants and storage conditions on clinical oxylipid levels in human plasma. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(12):1511–22. https://doi.org/10.1016/j.bbalip.2018.10.003.

    Article  CAS  PubMed  Google Scholar 

  87. Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW, Tan YT, Ji BT, Chow WH, Cai Q, Liu DK, Yang G, Xiang YB, Zheng W, Sinha R, Cross AJ, Moore SC. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomark Prev. 2013;22(4):631. https://doi.org/10.1158/1055-9965.EPI-12-1109.

    Article  CAS  Google Scholar 

  88. Trivedi DK, Hollywood KA, Goodacre R. Metabolomics for the masses: the future of metabolomics in a personalized world. New Horiz Transl Med. 2017;3(6):294–305. https://doi.org/10.1016/j.nhtm.2017.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Siskos AP, Jain P, Römisch-Margl W, Bennett M, Achaintre D, Asad Y, Marney L, Richardson L, Koulman A, Griffin JL, Raynaud F, Scalbert A, Adamski J, Prehn C, Keun HC. Interlaboratory reproducibility of a targeted metabolomics platform for analysis of human serum and plasma. Anal Chem. 2017;89(1):656–65. https://doi.org/10.1021/acs.analchem.6b02930.

    Article  CAS  PubMed  Google Scholar 

  90. Thompson JW, Adams KJ, Adamski J, Asad Y, Borts D, Bowden JA, Byram G, Dang V, Dunn WB, Fernandez F, Fiehn O, Gaul DA, Hühmer AFR, Kalli A, Koal T, Koeniger S, Mandal R, Meier F, Naser FJ, O’Neil D, Pal A, Patti GJ, Pham-Tuan H, Prehn C, Raynaud FI, Shen T, Southam AD, St. John-Williams L, Sulek K, Vasilopoulou CG, Viant M, Winder CL, Wishart D, Zhang L, Zheng J, Moseley MA. International ring trial of a high resolution targeted metabolomics and lipidomics platform for serum and plasma analysis. Anal Chem. 2019;91(22):14407–16. https://doi.org/10.1021/acs.analchem.9b02908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Marchand CR, Farshidfar F, Rattner J, Bathe OF. A framework for development of useful metabolomic biomarkers and their effective knowledge translation. Metabolites. 2018;8(4):59. https://doi.org/10.3390/metabo8040059.

    Article  CAS  PubMed Central  Google Scholar 

  92. Ala-Korpela M, Davey SG. Metabolic profiling–multitude of technologies with great research potential, but (when) will translation emerge? Int J Epidemiol. 2016;45(5):1311–8. https://doi.org/10.1093/ije/dyw305.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Murphy RC, Axelsen PH. Mass spectrometric analysis of long-chain lipids. Mass Spectrom Rev. 2011;30(4):579–99. https://doi.org/10.1002/mas.20284.

    Article  CAS  PubMed  Google Scholar 

  94. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, Ahonen L, Alnouti Y, Armando AM, Asara JM, Bamba T, Barr JR, Bergquist J, Borchers CH, Brandsma J, Breitkopf SB, Cajka T, Cazenave-Gassiot A, Checa A, Cinel MA, Colas RA, Cremers S, Dennis EA, Evans JE, Fauland A, Fiehn O, Gardner MS, Garrett TJ, Gotlinger KH, Han J, Huang Y, Neo AH, Hyötyläinen T, Izumi Y, Jiang H, Jiang H, Jiang J, Kachman M, Kiyonami R, Klavins K, Klose C, Köfeler HC, Kolmert J, Koal T, Koster G, Kuklenyik Z, Kurland IJ, Leadley M, Lin K, Maddipati KR, McDougall D, Meikle PJ, Mellett NA, Monnin C, Moseley MA, Nandakumar R, Oresic M, Patterson R, Peake D, Pierce JS, Post M, Postle AD, Pugh R, Qiu Y, Quehenberger O, Ramrup P, Rees J, Rembiesa B, Reynaud D, Roth MR, Susanne Sales S, Schuhmann K, Schwartzman ML, Serhan CN, Shevchenko A, Somerville SE, St John-Williams L, Surma MA, Takeda H, Thakare R, Thompson JW, Torta F, Triebl A, Trötzmüller M, Ubhayasekera SJK, Vuckovic D, Weir JM, Welti R, Wenk MR, Wheelock CE, Yao L, Yuan M, Zhao XH, Zhou S. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using standard reference material, 1950 metabolites in frozen human plasma. J Lipid Res. 2020. https://doi.org/10.1194/jlr.M079012.

    Article  Google Scholar 

  95. Kopczynski D, Coman C, Zahedi RP, Lorenz K, Sickmann A, Ahrends R. Multi-OMICS: a critical technical perspective on integrative lipidomics approaches. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(8):808–11. https://doi.org/10.1016/j.bbalip.2017.02.003.

    Article  CAS  PubMed  Google Scholar 

  96. Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform. 2018;20(6):1957–71. https://doi.org/10.1093/bib/bbx170.

    Article  PubMed Central  Google Scholar 

  97. Long NP, Nghi TD, Kang YP, Anh NH, Kim HM, Park SK, Kwon SW. Toward a standardized strategy of clinical metabolomics for the advancement of precision medicine. Metabolites. 2020;10(2):51. https://doi.org/10.3390/metabo10020051.

    Article  CAS  PubMed Central  Google Scholar 

  98. Gross RW. The evolution of lipidomics through space and time. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(8):731–9. https://doi.org/10.1016/j.bbalip.2017.04.006.

    Article  CAS  PubMed  Google Scholar 

  99. Cuperlovic-Culf M. Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites. 2018;8(1):4. https://doi.org/10.3390/metabo8010004.

    Article  CAS  PubMed Central  Google Scholar 

  100. Yuan ZX, Majchrzak-Hong S, Keyes GS, Iadarola MJ, Mannes AJ, Ramsden CE. Lipidomic profiling of targeted oxylipins with ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2018;410(23):6009–29. https://doi.org/10.1007/s00216-018-1222-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dasilva G, Muñoz S, Lois S, Medina I. Non-targeted LC-MS/MS assay for screening over 100 lipid mediators from ARA, EPA, and DHA in biological samples based on mass spectral fragmentations. Molecules. 2019;24(12):2276. https://doi.org/10.3390/molecules24122276.

    Article  CAS  PubMed Central  Google Scholar 

  102. Burla B, Muralidharan S, Wenk MR, Torta F. Sphingolipid analysis in clinical research. In: Giera M, editor. Clinical metabolomics: methods and protocols. New York: Springer York; 2018. p. 135–162.

    Chapter  Google Scholar 

  103. Narayanaswamy P, Shinde S, Sulc R, Kraut R, Staples G, Thiam CH, Grimm R, Sellergren B, Torta F, Wenk MR. Lipidomic “deep profiling”: an enhanced workflow to reveal new molecular species of signaling lipids. Anal Chem. 2014;86(6):3043–7. https://doi.org/10.1021/ac4039652.

    Article  CAS  PubMed  Google Scholar 

  104. Wozny K, Lehmann WD, Wozny M, Akbulut BS, Brügger B. A method for the quantitative determination of glycerophospholipid regioisomers by UPLC-ESI-MS/MS. Anal Bioanal Chem. 2019;411(4):915–24. https://doi.org/10.1007/s00216-018-1517-5.

    Article  CAS  PubMed  Google Scholar 

  105. Prinville V, Ohlund L, Sleno L. Targeted analysis of 46 bile acids to study the effect of acetaminophen in rat by LC-MS/MS. Metabolites. 2020;10(1):26. https://doi.org/10.3390/metabo10010026.

    Article  CAS  PubMed Central  Google Scholar 

  106. Kaabia Z, Laparre J, Cesbron N, Le Bizec B, Dervilly-Pinel G. Comprehensive steroid profiling by liquid chromatography coupled to high resolution mass spectrometry. J Steroid Biochem Mol Biol. 2018;183:106–15. https://doi.org/10.1016/j.jsbmb.2018.06.003.

    Article  CAS  PubMed  Google Scholar 

  107. Pham HT, Arnhard K, Asad YJ, Deng L, Felder TK, St John-Williams L, Kaever V, Leadley M, Mitro N, Muccio S, Prehn C, Rauh M, Rolle-Kampczyk U, Thompson JW, Uhl O, Ulaszewska M, Vogeser M, Wishart DS, Koal T. Inter-laboratory robustness of next-generation bile acid study in mice and humans: international ring trial involving 12 laboratories. J Appl Lab Med. 2019;1(2):129–42. https://doi.org/10.1373/jalm.2016.020537.

    Article  CAS  Google Scholar 

  108. John C, Werner P, Worthmann A, Wegner K, Tödter K, Scheja L, Rohn S, Heeren J, Fischer M. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids. J Chromatogr A. 2014;1371:184–95. https://doi.org/10.1016/j.chroma.2014.10.064.

    Article  CAS  PubMed  Google Scholar 

  109. Gao F, McDaniel J, Chen EY, Rockwell HE, Nguyen C, Lynes MD, Tseng YH, Sarangarajan R, Narain NR, Kiebish MA. Adapted MS/MSALL shotgun lipidomics approach for analysis of cardiolipin molecular species. Lipids. 2018;53(1):133–42. https://doi.org/10.1002/lipd.12004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang Q, Xu H, Liu R, Gao P, Yang X, Jin W, Zhang Y, Bi K, Li Q. A novel strategy for targeted lipidomics based on LC-tandem-MS parameters prediction, quantification, and multiple statistical data mining: evaluation of lysophosphatidylcholines as potential cancer biomarkers. Anal Chem. 2019;91(5):3389–96. https://doi.org/10.1021/acs.analchem.8b04715.

    Article  CAS  PubMed  Google Scholar 

  111. Reinicke M, Dorow J, Bischof K, Leyh J, Bechmann I, Ceglarek U. Tissue pretreatment for LC–MS/MS analysis of PUFA and eicosanoid distribution in mouse brain and liver. Anal Bioanal Chem. 2019. https://doi.org/10.1007/s00216-019-02170-w.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Meierhofer D. Acylcarnitine profiling by low-resolution LC-MS. PLoS ONE. 2019;14(8):e0221342. https://doi.org/10.1371/journal.pone.0221342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Tran Diem Nghi for excellent technical support and manuscript revision. Figures were created using some materials provided by Biorender illustration. This work was supported by BK21 Plus Program of Korea in 2020.

Funding

This work was supported by the Bio-Synergy Research Project of the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea (NRF-2012M3A9C4048796).

Author information

Authors and Affiliations

Authors

Contributions

SWK and JL supervised the overall project. NPL mainly contributed to this work. SP contributed to the data treatment and modeling section. NHA and SJK participated in the data processing and preparation of tables and illustrations. SWK, HMK, and SJY contributed to the sections of analytical aspects and the section of perspectives. JL gave a consultation in the data treatment and modeling section. All authors read, critically revised, and accepted the final content of the manuscript.

Corresponding author

Correspondence to Sung Won Kwon.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, N.P., Park, S., Anh, N.H. et al. Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. J. Anal. Test. 4, 183–197 (2020). https://doi.org/10.1007/s41664-020-00135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00135-y

Keywords

Navigation