Skip to main content
Log in

Lipidomic profiling of targeted oxylipins with ultra-performance liquid chromatography-tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Oxylipins are bioactive mediators that play diverse roles in (patho)physiology. We developed a sensitive and selective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous profiling of 57 targeted oxylipins derived from five major n-6 and n-3 polyunsaturated fatty acids (PUFAs) that serve as oxylipin precursors, including linoleic (LA), arachidonic (AA), alpha-linolenic (ALA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. The targeted oxylipin panel provides broad coverage of lipid mediators and pathway markers generated from cyclooxygenases, lipoxygenases, cytochrome P450 epoxygenases/hydroxylases, and non-enzymatic oxidation pathways. The method is based on combination of protein precipitation and solid-phase extraction (SPE) for sample preparation, followed by UPLC-MS/MS. This is the first methodology to incorporate four hydroxy-epoxy-octadecenoic acids and four keto-epoxy-octadecenoic acids into an oxylipin profiling network. The novel method achieves excellent resolution and allows in-depth analysis of isomeric and isobaric species of oxylipin extracts in biological samples. The method was quantitatively characterized in human plasma with good linearity (R = 0.990–0.999), acceptable reproducibility (relative standard deviation (RSD) < 20% for the majority of analytes), accuracy (67.8 to 129.3%) for all analytes, and recovery (66.8–121.2%) for all analytes except 5,6-EET. Ion enhancement effects for 28% of the analytes in tested concentrations were observed in plasma, but were reproducible with RSD < 17.2%. Basal levels of targeted oxylipins determined in plasma and serum are in agreement with those previously reported in literature. The method has been successfully applied in clinical and preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gabbs M, Leng S, Devassy JG, Monirujjaman M, Aukema HM. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv Nutr. 2015;6(5):513–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009;47(5):469–84.

    Article  CAS  PubMed  Google Scholar 

  3. Strassburg K, Huijbrechts AM, Kortekaas KA, Lindeman JH, Pedersen TL, Dane A, et al. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem. 2012;404(5):1413–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta. 2015;1851(4):397–413.

    Article  CAS  PubMed  Google Scholar 

  5. Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev. 2011;111(10):5922–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Capdevila JH, Falck JR. Biochemical and molecular characteristics of the cytochrome P450 arachidonic acid monooxygenase. Prostaglandins Other Lipid Mediat. 2000;62(3):271–92.

    Article  CAS  PubMed  Google Scholar 

  7. Yu Z, Schneider C, Boeglin WE, Marnett LJ, Brash AR. The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase. Proc Natl Acad Sci U S A. 2003;100(16):9162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bui P, Imaizumi S, Beedanagari SR, Reddy ST, Hankinson O. Human CYP2S1 metabolizes cyclooxygenase- and lipoxygenase-derived eicosanoids. Drug Metab Dispos. 2011;39(2):180–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roberts LJ 2nd, Fessel JP. The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem Phys Lipids. 2004;128(1–2):173–86.

    Article  CAS  PubMed  Google Scholar 

  10. Spiteller G. Lipid peroxidation in aging and age-dependent diseases. Exp Gerontol. 2001;36(9):1425–57.

    Article  CAS  PubMed  Google Scholar 

  11. Blank C, Neumann MA, Makrides M, Gibson RA. Optimizing DHA levels in piglets by lowering the linoleic acid to alpha-linolenic acid ratio. J Lipid Res. 2002;43(9):1537–43.

    Article  CAS  PubMed  Google Scholar 

  12. Markworth JF, Kaur G, Miller EG, Larsen AE, Sinclair AJ, Maddipati KR, Cameron-Smith D. Divergent shifts in lipid mediator profile following supplementation with n-3 docosapentaenoic acid and eicosapentaenoic acid. FASEB J. 2016;209(3):192–201.

  13. Ramsden CE, Zamora D, Majchrzak-Hong S, Faurot KR, Broste SK, Frantz RP, et al. Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota coronary experiment (1968-73). BMJ. 2016;353:i1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramsden CE, Ringel A, Feldstein AE, Taha AY, MacIntosh BA, Hibbeln JR, et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot Essent Fat Acids. 2012;87(4–5):135–41.

    Article  CAS  Google Scholar 

  15. Ramsden CE, Faurot KR, Zamora D, Suchindran CM, Macintosh BA, Gaylord S, et al. Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: a randomized trial. Pain. 2013;154(11):2441–51.

    Article  CAS  PubMed  Google Scholar 

  16. Ramsden CE, Ringel A, Majchrzak-Hong SF, Yang J, Blanchard H, Zamora D, Loewke JD, Rapoport SI, Hibbeln JR, Davis JM, Hammock BD, Taha AY. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids: Implications for idiopathic pain syndromes? Mol Pain. 2016;12:1–14.

  17. Lundstrom SL, Yang J, Brannan JD, Haeggstrom JZ, Hammock BD, Nair P, et al. Lipid mediator serum profiles in asthmatics significantly shift following dietary supplementation with omega-3 fatty acids. Mol Nutr Food Res. 2013;57(8):1378–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nording ML, Yang J, Georgi K, Hegedus Karbowski C, German JB, Weiss RH, et al. Individual variation in lipidomic profiles of healthy subjects in response to omega-3 fatty acids. PLoS One. 2013;8(10):e76575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294(5548):1871–5.

    Article  CAS  PubMed  Google Scholar 

  20. Amtul Z, Uhrig M, Wang L, Rozmahel RF, Beyreuther K. Detrimental effects of arachidonic acid and its metabolites in cellular and mouse models of Alzheimer’s disease: structural insight. Neurobiol Aging. 2012;33(4):831 e21–31.

    Article  CAS  Google Scholar 

  21. Corsinovi L, Biasi F, Poli G, Leonarduzzi G, Isaia G. Dietary lipids and their oxidized products in Alzheimer’s disease. Mol Nutr Food Res. 2011;55(Suppl 2):S161–72.

    Article  CAS  PubMed  Google Scholar 

  22. Narumiya S, Furuyashiki T. Fever, inflammation, pain and beyond: prostanoid receptor research during these 25 years. FASEB J. 2011;25(3):813–8.

    Article  CAS  PubMed  Google Scholar 

  23. Tessaro FH, Ayala TS, Martins JO. Lipid mediators are critical in resolving inflammation: a review of the emerging roles of eicosanoids in diabetes mellitus. Biomed Res Int. 2015;2015:568408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schuck RN, Theken KN, Edin ML, Caughey M, Bass A, Ellis K, et al. Cytochrome P450-derived eicosanoids and vascular dysfunction in coronary artery disease patients. Atherosclerosis. 2013;227(2):442–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez-Reyes RE, Nava-Mesa MO, Vargas-Sanchez K, Ariza-Salamanca D, Mora-Munoz L. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 2017;10:427.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sallam N, Laher I. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxidative Med Cell Longev. 2016;2016:7239639.

    Article  CAS  Google Scholar 

  27. Shapiro H, Singer P, Ariel A. Beyond the classic eicosanoids: peripherally-acting oxygenated metabolites of polyunsaturated fatty acids mediate pain associated with tissue injury and inflammation. Prostaglandins Leukot Essent Fat Acids. 2016;111:45–61.

    Article  CAS  Google Scholar 

  28. Luo P, Wang MH. Eicosanoids, beta-cell function, and diabetes. Prostaglandins Other Lipid Mediat. 2011;95(1–4):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nasrallah R, Hassouneh R, Hebert RL. PGE2, kidney disease, and cardiovascular risk: beyond hypertension and diabetes. J Am Soc Nephrol. 2016;27(3):666–76.

    Article  CAS  PubMed  Google Scholar 

  30. Waldman M, Peterson SJ, Arad M, Hochhauser E. The role of 20-HETE in cardiovascular diseases and its risk factors. Prostaglandins Other Lipid Mediat. 2016;125:108–17.

    Article  CAS  PubMed  Google Scholar 

  31. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2015;74:101–10.

    Article  CAS  PubMed  Google Scholar 

  32. Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Munzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–1619.

  33. Fraser PA. The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med. 2011;51(5):967–77.

    Article  CAS  PubMed  Google Scholar 

  34. Gong Z, Muzumdar RH. Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol. 2012;2012:320482.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang H, Weng J, Wang MH. EETs/sEH in diabetes and obesity-induced cardiovascular diseases. Prostaglandins Other Lipid Mediat. 2016;125:80–89.

  36. Waddington E, Sienuarine K, Puddey I, Croft K. Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography. Anal Biochem. 2001;292(2):234–44.

    Article  CAS  PubMed  Google Scholar 

  37. Tsikas D. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to assess in vivo synthesis of prostaglandins, thromboxane, leukotrienes, isoprostanes and related compounds in humans. J Chromatogr B Biomed Sci Appl. 1998;717(1–2):201–45.

    Article  CAS  PubMed  Google Scholar 

  38. Montine TJ, Sidell KR, Crews BC, Markesbery WR, Marnett LJ, Roberts LJ 2nd, et al. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology. 1999;53(7):1495–8.

    Article  CAS  PubMed  Google Scholar 

  39. Tacconelli S, Capone ML, Patrignani P. Measurement of 8-iso-prostaglandin F2alpha in biological fluids as a measure of lipid peroxidation. Methods Mol Biol. 2010;644:165–78.

    Article  CAS  PubMed  Google Scholar 

  40. Hughes H, Mitchell JR, Gaskell SJ. Quantitation of leukotriene B4 in human serum by negative ion gas chromatography-mass spectrometry. Anal Biochem. 1989;179(2):304–8.

    Article  CAS  PubMed  Google Scholar 

  41. Yang J, Eiserich JP, Cross CE, Morrissey BM, Hammock BD. Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic Biol Med. 2012;53(1):160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song J, Liu X, Wu J, Meehan MJ, Blevitt JM, Dorrestein PC, et al. A highly efficient, high-throughput lipidomics platform for the quantitative detection of eicosanoids in human whole blood. Anal Biochem. 2013;433(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  43. Yang R, Chiang N, Oh SF, Serhan CN. Metabolomics-lipidomics of eicosanoids and docosanoids generated by phagocytes. Curr Protoc Immunol. 2011;Chapter 14:Unit 14 26.

  44. Yang J, Schmelzer K, Georgi K, Hammock BD. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem. 2009;81(19):8085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia V, Gilani A, Shkolnik B, Pandey V, Zhang FF, Dakarapu R, et al. 20-HETE signals through G-protein-coupled receptor GPR75 (Gq) to affect vascular function and trigger hypertension. Circ Res. 2017;120(11):1776–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther. 2017;179:47–83.

    Article  CAS  PubMed  Google Scholar 

  47. Wolfer AM, Gaudin M, Taylor-Robinson SD, Holmes E, Development NJK. Validation of a high-throughput ultrahigh-performance liquid chromatography-mass spectrometry approach for screening of oxylipins and their precursors. Anal Chem. 2015;87(23):11721–31.

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Armando AM, Quehenberger O, Yan C, Dennis EA. Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. J Chromatogr A. 2014;1359:60–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kortz L, Dorow J, Becker S, Thiery J, Ceglarek U. Fast liquid chromatography-quadrupole linear ion trap-mass spectrometry analysis of polyunsaturated fatty acids and eicosanoids in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2013;927:209–13.

    Article  CAS  Google Scholar 

  50. Le Faouder P, Baillif V, Spreadbury I, Motta JP, Rousset P, Chene G, et al. LC-MS/MS method for rapid and concomitant quantification of pro-inflammatory and pro-resolving polyunsaturated fatty acid metabolites. J Chromatogr B Anal Technol Biomed Life Sci. 2013;932:123–33.

    Article  CAS  Google Scholar 

  51. Foreman HD, Brown JB. Solubilities of the fatty acids in organic solvents at low temperatures. J Am Oil Chem Soc. 1994;21(7):183–7.

    Google Scholar 

  52. Balas L, Guichardant M, Durand T, Lagarde M. Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie. 2014;99:1–7.

    Article  CAS  PubMed  Google Scholar 

  53. Mas E, Croft KD, Zahra P, Barden A, Mori TA. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem. 2012;58(10):1476–84.

    Article  CAS  PubMed  Google Scholar 

  54. Goodfriend TL, Ball DL, Egan BM, Campbell WB, Nithipatikom K. Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension. 2004;43(2):358–63.

    Article  CAS  PubMed  Google Scholar 

  55. Thomas CP, Boeglin WE, Garcia-Diaz Y, O'Donnell VB, Brash AR. Steric analysis of epoxyalcohol and trihydroxy derivatives of 9-hydroperoxy-linoleic acid from hematin and enzymatic synthesis. Chem Phys Lipids. 2013;167-168:21–32.

    Article  CAS  PubMed  Google Scholar 

  56. Oliw EH, Garscha U, Nilsson T, Cristea M. Payne rearrangement during analysis of epoxyalcohols of linoleic and alpha-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry. Anal Biochem. 2006;354(1):111–26.

    Article  CAS  PubMed  Google Scholar 

  57. Lin D, Zhang J, Sayre LM. Synthesis of six epoxyketooctadecenoic acid (EKODE) isomers, their generation from nonenzymatic oxidation of linoleic acid, and their reactivity with imidazole nucleophiles. J Org Chem. 2007;72(25):9471–80.

    Article  CAS  PubMed  Google Scholar 

  58. Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta. 2011;1811(11):648–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A. Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(2):75–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Balvers MG, Verhoeckx KC, Bijlsma S, Rubingh CM, Meijerink J, Wortelboer HM, et al. Fish oil and inflammatory status alter the n-3 to n-6 balance of the endocannabinoid and oxylipin metabolomes in mouse plasma and tissues. Metabolomics. 2012;8(6):1130–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pace-Asciak CR, Reynaud D, Demin PM. Hepoxilins: a review on their enzymatic formation, metabolism and chemical synthesis. Lipids. 1995;30(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  62. Blanc JA, Manneh VA, Ernst R, Berger DE, de Keczer SA, Chase C, et al. Adsorption losses from urine-based cannabinoid calibrators during routine use. Clin Chem. 1993;39(8):1705–12.

    CAS  PubMed  Google Scholar 

  63. Vandernoot VA, VanRollins M. Capillary electrophoresis of cytochrome P-450 epoxygenase metabolites of arachidonic acid. 2. Resolution of stereoisomers. Anal Chem. 2002;74(22):5866–70.

    Article  CAS  PubMed  Google Scholar 

  64. Fulton D, Falck JR, McGiff JC, Carroll MA, Quilley J. A method for the determination of 5,6-EET using the lactone as an intermediate in the formation of the diol. J Lipid Res. 1998;39(8):1713–21.

    CAS  PubMed  Google Scholar 

  65. Shinde DD, Kim KB, Oh KS, Abdalla N, Liu KH, Bae SK, et al. LC-MS/MS for the simultaneous analysis of arachidonic acid and 32 related metabolites in human plasma: basal plasma concentrations and aspirin-induced changes of eicosanoids. J Chromatogr B Anal Technol Biomed Life Sci. 2012;911:113–21.

    Article  CAS  Google Scholar 

  66. Gouveia-Figueira S, Spath J, Zivkovic AM, Nording ML. Profiling the Oxylipin and Endocannabinoid Metabolome by UPLC-ESI-MS/MS in Human Plasma to Monitor Postprandial Inflammation. Plos One. 2015;10(7):e0132042.

  67. Barden A, Mas E, Croft KD, Phillips M, Mori TA. Short-term n-3 fatty acid supplementation but not aspirin increases plasma proresolving mediators of inflammation. J Lipid Res. 2014;55(11):2401–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gouveia-Figueira S, Nording ML, Gaida JE, Forsgren S, Alfredson H, Fowler CJ. Serum levels of oxylipins in achilles tendinopathy: an exploratory study. PLoS One. 2015;10(4):e0123114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schuchardt JP, Schmidt S, Kressel G, Dong H, Willenberg I, Hammock BD, et al. Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukot Essent Fat Acids. 2013;89(1):19–29.

    Article  CAS  Google Scholar 

  70. Ramsden CE, Domenichiello AF, Yuan ZX, Sapio MR, Keyes GS, Mishra SK, Gross JR, Majchrzak-Hong S, Zamora D, Horowitz MS, Davis JM, Sorokin AV, Dey A, LaPaglia DM, Wheeler JJ, Vasko MR, Mehta NN, Mannes AJ, Iadarola MJ. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch. Sci Signal. 2017;10(493):eaal5241.

  71. Sorokin AV, Domenichiello AF, Dey AK, Yuan ZX, Goyal A, Rose SM, Playford MP, Ramsden CE, Mehta NN. Bioactive Lipid Mediator Profiles in Human Psoriasis Skin and Blood. J Invest Dermatol. 2018;138(7):1518–1528.

Download references

Acknowledgments

This work was supported by the Intramural Programs of the National Institute on Aging (NIA), National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH Clinical Center Department of Perioperative Medicine, and the Mayday Fund. The authors would like to thank Dr. Charles N. Serhan for sharing methods and providing resolvin and protectin standards, the research participants who provided plasma samples, the many NIH co-investigators and staff who contributed to collection and processing of these plasma samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xin Yuan.

Ethics declarations

Protocol 11-AA-0028 was reviewed and approved by an NIH Institutional Review Board (FWA# 00005897), and informed consent was obtained from all study participants.

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(PDF 1.52 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, ZX., Majchrzak-Hong, S., Keyes, G.S. et al. Lipidomic profiling of targeted oxylipins with ultra-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 410, 6009–6029 (2018). https://doi.org/10.1007/s00216-018-1222-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1222-4

Keywords

Navigation