Skip to main content
Log in

Electrochemiluminescence in Thermo-Responsive Hydrogel Films with Tunable Thickness

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Electrochemiluminescence (ECL) has attracted considerable interest for many applications such as microscopy, (bio)analysis, light-emitting materials or devices. In this work, we report the fabrication and characterization of ECL-active hydrogel films with tunable thickness. The redox films were prepared by electrochemically-assisted radical polymerization by potential cycling of a PBS solution containing the monomer N-isopropylacrylamide, the initiator potassium persulfate, the cross-linker N,N′-methylenebis(acrylamide) and the Ru(bpy)3 monomer. The deposits were easily prepared in a rapid and well-controlled one-step procedure. The resulting homogeneous films are composed of a poly(N-isopropylacrylamide) (pNIPAM) matrix, which incorporates covalently [Ru(bpy)3]2+ centers. The thickness and the number of ECL-active sites is tuned by controlling the number of voltammetric scans. The deposited pNIPAM films are permeable to water-soluble chemicals such as the coreactant tri-n-propylamine (TPrA). The voltammetric characterization shows a continuous increase of the number of redox-active sites. Results indicate that ECL signals are proportional to the number of electrodeposited [Ru(bpy)3]2+ centers. Such approach combining ECL and stimuli-responsive hydrogels open exciting prospects for developing new (bio)sensing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bard AJ. Electrogenerated chemiluminescence. New-York: M. Dekker; 2004.

    Book  Google Scholar 

  2. Sojic N. Analytical Electrogenerated Chemiluminescence: From Fundamentals to Bioassays, Royal Society of Chemistry (RSC) Publishing; 2020.

  3. Forster RJ, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Annu Rev Anal Chem. 2009;2:359–85.

    Article  CAS  Google Scholar 

  4. Delaney JL, Hogan CF, Tian J, Shen W. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem. 2011;83:1300–6.

    Article  CAS  PubMed  Google Scholar 

  5. Hu L, Bian Z, Li H, Han S, Yuan Y, Gao L, Xu G. [Ru(bpy)2d ppz]2+ electrochemiluminescence switch and its applications for DNA interaction study and label-free ATP aptasensor. Anal Chem. 2009;81:9807–11.

    Article  CAS  PubMed  Google Scholar 

  6. Qi W, Lai J, Gao W, Li S, Hanif S, Xu G. Wireless electrochemiluminescence with disposable minidevice. Anal Chem. 2014;86:8927–31.

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–422.

    Article  CAS  PubMed  Google Scholar 

  8. Zanut A, Fiorani A, Rebeccani S, Kesarkar S, Valenti G. Electrochemiluminescence as emerging microscopy techniques. Anal Bioanal Chem. 2019;411:4375–82.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence imaging for bioanalysis. Annu Rev Anal Chem. 2019;12:275–95.

    Article  CAS  Google Scholar 

  10. Voci S, Goudeau B, Valenti G, Lesch A, Jović M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-confined electrochemiluminescence microscopy of cell membranes. J Am Chem Soc. 2018;140:14753–60.

    Article  CAS  PubMed  Google Scholar 

  11. He R, Tang H, Jiang D, Chen H-Y. Electrochemical visualization of intracellular hydrogen peroxide at single cells. Anal Chem. 2016;88:2006–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ding H, Guo W, Su B. Imaging cell-matrix adhesions and collective migration of living cells by electrochemiluminescence microscopy. Angew Chem Int Ed. 2020;59:449–56.

    Article  CAS  Google Scholar 

  13. Rampazzo E, Bonacchi S, Genovese D, Juris R, Marcaccio M, Montalti M, Paolucci F, Sgarzi M, Valenti G, Zaccheroni N, Prodi L. Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications. Coord Chem Rev. 2012;256:1664–811.

    Article  CAS  Google Scholar 

  14. Irkham I, Watanabe T, Fiorani A, Valenti G, Paolucci F, Einaga Y. Co-reactant-on-demand ECL: electrogenerated chemiluminescence by the in situ production of S2O82– at boron-doped diamond electrodes. J Am Chem Soc. 2016;138:15636–41.

    Article  CAS  PubMed  Google Scholar 

  15. Rubinstein I, Bard AJ. Polymer films on electrodes. 5. Electrochemistry and chemiluminescence at Nafion-coated electrodes. J Am Chem Soc. 1981;103:5007–133.

    Article  CAS  Google Scholar 

  16. Rubinstein I, Bard AJ. Polymer films on electrodes. 4. Nafion-coated electrodes and electrogenerated chemiluminescence of surface-attached Ru(bpy)32+. J Am Chem Soc. 1980;102:6642–4.

    Article  Google Scholar 

  17. Downey TM, Nieman TA. Chemiluminescence detection using regenerable tris(2,2'-bipyridyl)ruthenium(II) immobilized in Nafion. Anal Chem. 1992;64:261–8.

    Article  CAS  PubMed  Google Scholar 

  18. Moretto LM, Kohls T, Badocco D, Pastore P, Sojic N, Ugo P. Electrochemiluminescence of Ru(bpy)32+ loaded in Nafion Langmuir-Blodgett films: Role of the interfacial ultrathin film. J Electroanal Chem. 2010;640:35–41.

    Article  CAS  Google Scholar 

  19. Moretto LM, Kohls T, Chovin A, Sojic N, Ugo P. Epifluorescence imaging of electrochemically switchable Langmuir-Blodgett films of Nafion. Langmuir. 2008;24:6367.

    Article  CAS  PubMed  Google Scholar 

  20. Forster RJ, Hogan CF. Electrochemiluminescent metallopolymer coatings: combined light and current detection in flow injection analysis. Anal Chem. 2000;72:5576–82.

    Article  CAS  PubMed  Google Scholar 

  21. Hogan CF, Forster RJ. Mediated electron transfer for electroanalysis: transport and kinetics in thin films of [Ru (bpy)2PVP10] (ClO4)2. Anal Chim Acta. 1999;396:13–21.

    Article  CAS  Google Scholar 

  22. Dennany L, Forster RJ, Rusling JF. Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films. J Am Chem Soc. 2003;125:5213–8.

    Article  CAS  PubMed  Google Scholar 

  23. Dennany L, Hogan CF, Keyes TE, Forster RJ. Effect of surface immobilization on the electrochemiluminescence of ruthenium-containing metallopolymers. Anal Chem. 2006;78:1412–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sallard S, Patolle J, Soukharev V, Heller A, Mano N, Sojic N. Electrogenerated chemiluminescence in an electrodeposited redox hydrogel. Electrochem Commun. 2009;11:599–602.

    Article  CAS  Google Scholar 

  25. Milutinovic M, Suraniti E, Studer V, Mano N. Manojlovic D, Sojic N. Photopatterning of ultrathin electrochemiluminescent redox hydrogel films. Chem Commun. 2011;47:9125–7.

    Article  CAS  Google Scholar 

  26. Milutinovic M, Sallard S, Manojlovic D, Mano N, Sojic N. Glucose sensing by electrogenerated chemiluminescence of glucose-dehydrogenase produced NADH on electrodeposited redox hydrogel. Bioelectrochem. 2011;82:63–8.

    Article  CAS  Google Scholar 

  27. Zhou L, Yang J, Estavillo C, Stuart JD, Schenkman JB, Rusling JF. Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films. J Am Chem Soc. 2003;125:1431–6.

    Article  CAS  PubMed  Google Scholar 

  28. Wang B, Rusling JF. Voltammetric sensor for chemical toxicity using [Ru(bpy)2poly(4-vinylpyridine)10Cl)]+ as catalyst in ultrathin films. DNAdamage from methylating agents and an enzyme-generated epoxide. Anal Chem. 2003;75:4229–355.

    Article  CAS  PubMed  Google Scholar 

  29. Dennany L, Forster RJ, White B, Smyth M, Rusling JF. Direct electrochemiluminescence detection of oxidized DNA in ultrathin films containing [Os(bpy)2(PVP)10]2+. J Am Chem Soc. 2004;126:8835–41.

    Article  CAS  PubMed  Google Scholar 

  30. Khramov AN, Collinson MM. Electrogenerated chemiluminescence of tris(2,2'-bipyridyl)ruthenium(II) ion-exchanged in Nafion-silica composite films. Anal Chem. 2000;72:2943–8.

    Article  CAS  PubMed  Google Scholar 

  31. Collinson MM, Novak B, Martin SA, Taussig JS. Electrochemiluminescence of ruthenium(II) tris(bipyridine) encapsulated in sol-gel glasses. Anal Chem. 2000;72:2914–8.

    Article  CAS  PubMed  Google Scholar 

  32. Soulsby LC, Doeven EH, Pham TT, Eyckens DJ, Henderson LC, Long BM, Guijt RM, Francis PS. Colour tuning and enhancement of gel-based electrochemiluminescence devices utilising Ru(ii) and Ir(iii) complexes. Chem Commun. 2019;55:11474–7.

    Article  CAS  Google Scholar 

  33. Pinaud F, Russo L, Pinet S, Gosse I, Ravaine V, Sojic N. Enhanced electrogenerated chemiluminescence in thermoresponsive microgels. J Am Chem Soc. 2013;135:5517–20.

    Article  CAS  PubMed  Google Scholar 

  34. Li H, Sentic M, Ravaine V, Sojic N. Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films. Phys Chem Chem Phys. 2016;18:32697–702.

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Voci S, Ravaine V, Sojic N. Tuning electrochemiluminescence in multistimuli responsive hydrogel films. J Phys Chem Lett. 2018;9:340–5.

    Article  CAS  PubMed  Google Scholar 

  36. Pinaud F, Millereux R, Vialar-Trarieux P, Catargi B, Pinet S, Gosse I, Sojic N, Ravaine V. Differential photoluminescent and electrochemiluminescent behavior for resonance energy transfer processes in thermoresponsive microgels. J Phys Chem B. 2015;119:12954–61.

    Article  CAS  PubMed  Google Scholar 

  37. Guo W, Ding H, Su B. Electrochemiluminescence of metallated porous organic polymers. J Electroanal Chem. 2018;818:176–80.

    Article  CAS  Google Scholar 

  38. Cho KG,Lee JI, Lee S, Hong K, Kang MS,Lee KH, Light‐emitting devices based on electrochemiluminescence gels. Adv Funct Mater 2020, 1907936

  39. Li Y, Jiang ZW, Xiao SY, Huang CZ, Li YF. Terbium(III) organic gels: novel antenna effect-induced enhanced electrochemiluminescence emitters. Anal Chem. 2018;90:12191–7.

    Article  CAS  PubMed  Google Scholar 

  40. Reuber J, Reinhardt H, Johannsmann D. Formation of surface-attached responsive gel layers via electrochemically induced free-radical polymerization. Langmuir. 2006;22:3362–7.

    Article  CAS  PubMed  Google Scholar 

  41. Bunsow J, Johannsmann D. Electrochemically produced responsive hydrogel films: Influence of added salt on thickness and morphology. J Colloid Interface Sci. 2008;326:61–5.

    Article  PubMed  CAS  Google Scholar 

  42. Yuan Y, Han S, Hu L, Parveen S, Xu G. Coreactants of tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence. Electrochim Acta. 2012;82:484–92.

    Article  CAS  Google Scholar 

  43. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39:3275–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (NEOCASTIP ANR-15-CE09-0015-03). HL acknowledges the Natural Science Foundations of Jiangsu Province (No. BK20180893).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neso Sojic.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the author.

Additional information

To be submitted to the Journal of Analysis and Testing, Special Issue on Electrochemiluminescence: Fundamentals to Applications

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ravaine, V. & Sojic, N. Electrochemiluminescence in Thermo-Responsive Hydrogel Films with Tunable Thickness. J. Anal. Test. 4, 107–113 (2020). https://doi.org/10.1007/s41664-020-00131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00131-2

Keywords

Navigation