Skip to main content

Hydrogel Responsive Nanomaterials for Colorimetric Chemical Sensors

  • Chapter
  • First Online:
Responsive Nanomaterials for Sustainable Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 297))

Abstract

The stimuli-responsive hydrogels are three-dimensional hydrophilic polymeric networks with a fascinating property that they will undergo an obvious and reversible volumetric variation in response to a small variation of external environmental stimuli. In particular, combining of the stimuli-responsive hydrogels with photonic crystals (PCs) or Au nanoparticles (NPs), the volumetric variation responded to external stimuli could be converted into a color change, thus creating a kind of colorimetric sensors. These colorimetric sensors attract more and more interest of researchers in different fields due to their simple operation and visualized readout. Herein, after presenting a brief review on the basis concept, synthesis methods and sensitive mechanisms of the stimuli-responsive hydrogels, this chapter mainly focuses on their applications as colorimetric chemical sensors by combining with PCs. And some typical applications are proposed in detail, such as detecting pH value, ionic species, solvents, humidity, and biomolecules. In order to meet the increasing requirements of practical applications, the selectivity, response rate, and resolution ratio of these colorimetric sensors need to be improved in the near further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Mahinroosta, Z.J. Farsangi, A. Allahverdi et al., Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mater. Today Chem. 8, 42–55 (2018)

    Article  CAS  Google Scholar 

  2. T.E. Brown, B.J. Carberry, B.T. Worrell et al., Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange. Biomaterials 178, 496–503 (2018)

    Article  CAS  Google Scholar 

  3. B.H. Cipriano, S.J. Banik, R. Sharma et al., Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules 47(13), 4445–4452 (2014)

    Article  CAS  Google Scholar 

  4. M.T.I. Mredha, Y.Z. Guo, T. Nonoyama et al., A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30(9), 1704937 (2018)

    Article  CAS  Google Scholar 

  5. Y. Zhou, M. Layani, S.C. Wang et al., Fully printed flexible smart hybrid hydrogels. Adv. Funct. Mater. 28(9), 1705365 (2018)

    Article  CAS  Google Scholar 

  6. I. Tokarev, S. Minko, Stimuli-responsive hydrogel thin films. Soft Matter 5(3), 511–524 (2009)

    Article  CAS  Google Scholar 

  7. A. Richter, G. Paschew, S. Klatt et al., Review on hydrogel-based pH sensors and microsensors. Sensors 8(1), 561–581 (2008)

    Article  CAS  Google Scholar 

  8. S. Basu, H.S. Samanta, J. Ganguly, Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using dolichos biflorus linn. Soft Mater 16(1), 7–19 (2018)

    Article  CAS  Google Scholar 

  9. T. Montheil, C. Echalier, J. Martinez et al., Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. J. Mater. Chem. B 6(21), 3434–3448 (2018)

    Article  CAS  Google Scholar 

  10. S.L. Vega, M.Y. Kwon, K.H. Song et al., Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat. Commun. 9, 614 (2018)

    Article  CAS  Google Scholar 

  11. S.J. Buwalda, K.W.M. Boere, P.J. Dijkstra et al., Hydrogels in a historical perspective: from simple networks to smart materials. J. Control. Rel. 190, 254–273 (2014)

    Article  CAS  Google Scholar 

  12. A.M. Rosales, K.S. Anseth, The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1(2), 15012 (2016)

    Article  CAS  Google Scholar 

  13. B.H. Hu, C.O. Owh, P.L. Chee et al., Supramolecular hydrogels for antimicrobial therapy. Chem. Soc. Rev. 47(18), 6917–6929 (2018)

    Article  CAS  Google Scholar 

  14. S.Y. Chin, Y.C. Poh, A.C. Kohler et al., Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci. Robot. 2(2), 6451 (2017)

    Article  Google Scholar 

  15. Q.F. Rong, W.W. Lei, M.J. Liu, Conductive hydrogels as smart materials for flexible electronic devices. Chemistry–A European Journal 24(64), 16930–16943 (2018)

    Article  CAS  Google Scholar 

  16. H.Y. Peng, W. Wang, F.H. Gao et al., Ultrasensitive diffraction gratings based on smart hydrogels for highly selective and rapid detection of trace heavy metal ions. J. Mater. Chem. C 6(42), 11356–11367 (2018)

    Article  CAS  Google Scholar 

  17. Q.S. Chen, W.H. Shi, M.F. Cheng et al., Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Microchim. Acta 185(12), 557 (2018)

    Article  CAS  Google Scholar 

  18. R. Wu, S.H. Zhang, Q. Zhang et al., Volumetric hydrogel sensor enables visual and quantitative detection of sulfion. Sensor. Actuat. B: Chem. 282, 750–755 (2019)

    Article  CAS  Google Scholar 

  19. Z.Y. Lei, Q.K. Wang, S.T. Sun et al., A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 29(22), 1700321 (2017)

    Article  CAS  Google Scholar 

  20. M.Q. Li, H.W. Liao, Q.L. Deng et al., Preparation of an intelligent hydrogel sensor based on g-C3N4 nanosheets for selective detection of Ag+. J. Macromol. Sci. Part A 55(5), 408–413 (2018)

    Article  CAS  Google Scholar 

  21. C. Chen, Z.Q. Dong, J.H. Shen et al., 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS Omega 3(3), 3211–3217 (2018)

    Article  CAS  Google Scholar 

  22. J. Nam, I.B. Jung, B. Kim et al., A colorimetric hydrogel biosensor for rapid detection of nitrite ions. Sensor. Actuat. B: Chem. 270, 112–118 (2018)

    Article  CAS  Google Scholar 

  23. H. Liu, M.X. Li, C. Ouyang et al., Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors. Small 14(36), 1801711 (2018)

    Article  CAS  Google Scholar 

  24. J.J. Qin, B.H. Dong, L.X. Cao et al., Photonic hydrogels for the ultratrace sensing of divalent beryllium in seawater. J. Mater. Chem. C 6(15), 4234–4242 (2018)

    Article  CAS  Google Scholar 

  25. R. Wu, S.H. Zhang, J. Lyu et al., A visual volumetric hydrogel sensor enables quantitative and sensitive detection of copper ions. Chem. Commun. 51(38), 8078–8081 (2015)

    Article  CAS  Google Scholar 

  26. I. Willner, Stimuli-controlled hydrogels and their applications. Acc. Chem. Res. 50(4), 657–658 (2017)

    Article  CAS  Google Scholar 

  27. M. Sun, R.B. Bai, X.Y. Yang et al., Hydrogels: hydrogel interferometry for ultrasensitive and highly selective chemical detection. Adv. Mater. 30(46), 1870352 (2018)

    Article  Google Scholar 

  28. H.Z. Kang, A.C. Trondoli, G.Z. Zhu et al., Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 5(6), 5094–5099 (2011)

    Article  CAS  Google Scholar 

  29. T. Jing, H.R. Du, Q. Dai et al., Magnetic molecularly imprinted nanoparticles for recognition of lysozyme. Biosensor. Bioelectro 26(2), 301–306 (2010)

    Article  CAS  Google Scholar 

  30. B.G. Kabra, S.H. Gehrke, R.J. Spontak, Microporous, responsive hydroxypropyl cellulose gels. 1. Synthesis and microstructure. Macromolecules 31(7), 2166–2173 (1998)

    Article  CAS  Google Scholar 

  31. W.A. Laftah, S. Hashim, A.N. Ibrahim, Polymer hydrogels: a review. Polym. Plast. Technol. 50(14), 1475–1486 (2011)

    Article  CAS  Google Scholar 

  32. I. Tokarev, S. Minko, Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv. Mater. 22(31), 3446–3462 (2010)

    Article  CAS  Google Scholar 

  33. H. Li, T.Y. Ng, Y.K. Yew et al., Modeling and simulation of the swelling behavior of pH-stimulus-responsive hydrogels. Biomacromol 6(1), 109–120 (2005)

    Article  CAS  Google Scholar 

  34. A. Döring, W. Birnbaum, D. Kuckling, Responsive hydrogels-structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem. Soc. Rev. 42(17), 7391–7420 (2013)

    Article  CAS  Google Scholar 

  35. R.V. Kulkarni, S.A. Biswanath, Electrically responsive smart hydrogels in drug delivery: a review. J. Appl. Biomater. Funct. Mater. 5(3), 125–139 (2007)

    CAS  Google Scholar 

  36. A.L. Navarro-Verdugo, F.M. Goycoolea, G. Romero-Meléndez et al., A modified Boltzmann sigmoidal model for the phase transition of smart gels. Soft Mater. 7(12), 5847–5853 (2011)

    Article  CAS  Google Scholar 

  37. Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliver. Rev 53(3), 321–339 (2001)

    Article  CAS  Google Scholar 

  38. Y. Ogawa, K. Ogawa, E. Kokufuta, Swelling-shrinking behavior of a polyampholyte gel composed of positively charged networks with immobilized polyanions. Langmuir 20(7), 2546–2552 (2004)

    Article  CAS  Google Scholar 

  39. F. Ganji, F.S. Vasheghani, F.E. Vasheghani, Theoretical description of hydrogel swelling: a review. Iran. Polym. J. 19(5), 375–398 (2010)

    CAS  Google Scholar 

  40. J. Kim, M.J. Serpe, L.A. Lyon, Hydrogel microparticles as dynamically tunable microlenses. J. Am. Chem. Soc. 126(31), 9512–9513 (2004)

    Article  CAS  Google Scholar 

  41. H.L. Li, D.D. Men, Y.Q. Sun et al., Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics. Nanotechnology 28, 405502 (2017)

    Article  CAS  Google Scholar 

  42. X.L. Xiong, C.C. Wu, C.S. Zhou et al., Responsive DNA-based hydrogels and their applications. Macromol. Rapid Commun. 34(16), 1271–1283 (2013)

    Article  CAS  Google Scholar 

  43. D.D. Men, H.H. Zhang, Y. Li et al., Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces: anti-curling performance and enhanced optical diffraction intensity. J. Mater. Chem. C 3, 3659–3665 (2015)

    Article  CAS  Google Scholar 

  44. D.D. Men, F. Zhou, Y. Li et al., Gold nanoshell arrays-based visualized sensors of pH: Facile fabrication and high diffraction intensity. J. Mater. Res. 32(4), 717–725 (2017)

    Article  CAS  Google Scholar 

  45. D.D. Men, L.F. Hang, Y. Li et al., 3-Acrylamidophenylboronic acid-modified hydrogel film attached to a gold nanosphere array to detect hydrofluoric acid with good selectivity and recyclability. Chem. Nano Mat. 4(2), 165–169 (2018)

    CAS  Google Scholar 

  46. X.G. Han, Y.D. Liu, Y.D. Yin, Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 14(5), 2466–2470 (2014)

    Article  CAS  Google Scholar 

  47. C. Fenzl, S. Wilhelm, T. Hirsch et al., Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl. Mater. Interfaces 5(1), 173–178 (2013)

    Article  CAS  Google Scholar 

  48. L. Nucara, V. Piazza, F. Greco et al., Ionic strength responsive sulfonated polystyrene opals. ACS Appl. Mater. Interfaces 9(5), 4818–4827 (2017)

    Article  CAS  Google Scholar 

  49. J.P. Couturier, M. Sütterlin, A. Laschewsky et al., Responsive inverse opal hydrogels for the sensing of macromolecules. Angew. Chem. Int. Ed. 54(22), 6641–6644 (2015)

    Article  CAS  Google Scholar 

  50. G.B. Huang, Y.B. Yin, Z. Pan et al., Fabrication of 3D photonic crystals from chitosan that are responsive to organic solvents. Biomacromol 15(12), 4396–4402 (2014)

    Article  CAS  Google Scholar 

  51. C. Fenzl, T. Hirsch, O.S. Wolfbeis, Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed. 53(13), 3318–3335 (2014)

    Article  CAS  Google Scholar 

  52. J.Y. Xu, C.X. Yan, C. Liu et al., Photonic crystal hydrogel sensor for detection of nerve agent. IOP Conf. Ser.: Mater. Sci. Eng. 167(1), 012024 (2017)

    Google Scholar 

  53. H. Xu, J.Y. Zhang, Y.S. Xu et al., Down’s syndrome screening with hydrogel photonic barcodes. Sensor. Actuat. B: Chem. 255, 2690–2696 (2018)

    Article  CAS  Google Scholar 

  54. Y.S. Xu, H. Wang, C.X. Luan et al., Porous hydrogel encapsulated photonic barcodes for multiplex microRNA quantification. Adv. Funct. Mater. 28(1), 1704458 (2018)

    Article  CAS  Google Scholar 

  55. Y.J. Zhao, X.W. Zhao, Z.Z. Gu, Photonic crystals in bioassays. Adv. Funct. Mater. 20(18), 2970–2988 (2010)

    Article  CAS  Google Scholar 

  56. K.I. MacConaghy, C.I. Geary, J.L. Kaar et al., Photonic crystal kinase biosensor. J. Am. Chem. Soc. 136(19), 6896–6899 (2014)

    Article  CAS  Google Scholar 

  57. D.D. Men, D.L. Liu, Y. Li, Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals. Sci. Bul. 61(17), 1358–1371 (2016)

    Article  CAS  Google Scholar 

  58. J.P. Ge, Y.D. Yin, Responsive photonic crystals. Angew. Chem. Int. Ed. 50(7), 1492–1522 (2011)

    Article  CAS  Google Scholar 

  59. P. Lova, G. Manfredi, D. Comoretto, Advances in functional solution processed planar 1D photonic crystals. Adv. Opt. Mater. 1800730 (2018)

    Google Scholar 

  60. J. Sevilla, A. Andueza, Optical sensing based on photonic crystal structures. Fiber Opt. Sens. 21, 223–240 (2017)

    Article  Google Scholar 

  61. C.I. Aguirre, E. Reguera, A. Stein, Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 20(16), 2565–2578 (2010)

    Article  CAS  Google Scholar 

  62. H. Wang, K.Q. Zhang, Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13(4), 4192–4213 (2013)

    Article  CAS  Google Scholar 

  63. Y.J. Zhao, Z.Y. Xie, H.C. Gu et al., Bio-inspired variable structural color materials. Chem. Soc. Rev. 41(8), 3297–3317 (2012)

    Article  CAS  Google Scholar 

  64. S.J. Jeon, M.C. Chiappelli, R.C. Hayward, Photocrosslinkable nanocomposite multilayers for responsive 1D photonic crystals. Adv. Funct. Mater. 26(5), 722–728 (2016)

    Article  CAS  Google Scholar 

  65. W.D. Zhao, M.H. Quan, Z.Q. Cao et al., Visual multi-triggered sensor based on inverse opal hydrogel. Colloid. Surf. A: Physicochem. Eng. 554, 93–99 (2018)

    Article  CAS  Google Scholar 

  66. Z. Hu, X. Lu, J. Gao, Hydrogel opals. Adv. Mater. 13(22), 1708–1712 (2001)

    Article  CAS  Google Scholar 

  67. Y. Takeoka, M. Watanabe, Tuning structural color changes of porous thermosensitive gels through quantitative adjustment of the cross-linker in pre-gel solutions. Langmuir 19(22), 9104–9106 (2003)

    Article  CAS  Google Scholar 

  68. K. Ueno, K. Matsubara, M. Watanabe et al., An electro-thermochromic hydrogel as a full-color indicator. Adv. Mater. 19(19), 2807–2812 (2007)

    Article  CAS  Google Scholar 

  69. M.C. Chiappelli, R.C. Hayward, Photonic multilayer sensors from photo-crosslinkable polymer films. Adv. Mater. 24(45), 6100–6104 (2012)

    Article  CAS  Google Scholar 

  70. J. Wang, Y. Hu, R. Deng et al., Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure. Langmuir 29(28), 8825–8834 (2013)

    Article  CAS  Google Scholar 

  71. W.T. Wang, X.Q. Fan, F.H. Li et al., Magnetochromic photonic hydrogel for an alternating magnetic field-responsive color display. Adv. Opt. Mater. 6(4), 1701093 (2018)

    Article  CAS  Google Scholar 

  72. D.D. Men, F. Zhou, Y. Li et al., A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor. J. Mater. Chem. C 4, 2117–2122 (2016)

    Article  CAS  Google Scholar 

  73. J. Shin, P.V. Braun, W. Lee, Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sensor. Actuat. B: Chem. 150(1), 183–190 (2010)

    Article  CAS  Google Scholar 

  74. E.T. Tian, Y. Ma, L.Y. Cui et al., Color-oscillating photonic crystal hydrogel. Macromol. Rapid Commun. 30(20), 1719–1724 (2009)

    Article  CAS  Google Scholar 

  75. W. Luo, Q. Cui, K. Fang et al., Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. (2018). https://doi.org/10.1021/acs.nanolett.7b04218

    Article  Google Scholar 

  76. Y.J. Lee, P.V. Braun, Tunable inverse opal hydrogel pH sensors. Adv. Mater. 15(7–8), 563–566 (2003)

    Article  CAS  Google Scholar 

  77. J.Y. Wang, Y. Cao, Y. Feng et al., Multiresponsive inverse-opal hydrogels. Adv. Mater. 19(22), 3865–3871 (2007)

    Article  CAS  Google Scholar 

  78. W. Luo, J.D. Yan, Y.L. Tan et al., Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant. Nanoscale 9(27), 9548–9555 (2017)

    Article  CAS  Google Scholar 

  79. A.V. Goponenko, S.A. Asher, Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ Sensing materials. J. Am. Chem. Soc. 127, 10753–10759 (2005)

    Article  CAS  Google Scholar 

  80. W. Hong, W.H. Li, X.B. Hu et al., Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. J. Mater. Chem. 21(43), 17193–17201 (2011)

    Article  CAS  Google Scholar 

  81. W. Hong, X.B. Hu, B.Y. Zhao et al., Tunable photonic polyelectrolyte colorimetric sensing for anions, cations and zwitterions. Adv. Mater. 22(44), 5043–5047 (2010)

    Article  CAS  Google Scholar 

  82. B.F. Ye, Y.J. Zhao, Y. Cheng et al., Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4(19), 5998–6003 (2012)

    Article  CAS  Google Scholar 

  83. C. Price, J. Carroll, T.L. Clare, Chemoresistive and photonic hydrogel sensors of transition metal ions via Hofmeister series principles. Sensor. Actuat. B: Chem. 256, 870–877 (2018)

    Article  CAS  Google Scholar 

  84. X. Jia, T. Zhang, J. Wang et al., Responsive photonic hydrogel-based colorimetric sensors for detection of aldehydes in aqueous solution. Langmuir 34(13), 3987–3992 (2018)

    Article  CAS  Google Scholar 

  85. C.J. Zhang, M.D. Losego, P.V. Braun, Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem. Mater. 25, 3239–3250 (2013)

    Article  CAS  Google Scholar 

  86. Y.X. Yuan, Z.L. Li, Y. Liu et al., Hydrogel photonic sensor for the detection of 3-Pyridinecarboxamide. Chem. Eur. J. 18, 303–309 (2012)

    Article  CAS  Google Scholar 

  87. C.J. Zhang, G.G. Cano, P.V. Braun, Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678–5683 (2014)

    Article  CAS  Google Scholar 

  88. K.I. MacConaghy, D.M. Chadly, M.P. Stoykovich et al., Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: impact of material and solution properties. Anal. Chem. 87(6), 3467–3475 (2015)

    Article  CAS  Google Scholar 

  89. Y.S. Huang, Y.L. Ma, Y.H. Chen et al., Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead. Anal. Chem. 86(22), 11434–11439 (2014)

    Article  CAS  Google Scholar 

  90. D.L. Liu, L.L. Fang, Y. Li et al., Ultrasensitive and stable Au dimer-based colorimetric sensors using the dynamically tunable gap-dependent plasmonic coupling optical properties. Adv. Funct. Mater. 28(18), 1707392 (2018)

    Article  CAS  Google Scholar 

  91. J.H. Kim, B.W. Boote, J.A. Pham et al., Thermally tunable catalytic and optical properties of gold-hydrogel nanocomposites. Nanotechnology 23(27), 275606 (2012)

    Article  CAS  Google Scholar 

  92. J.J. Zhang, L. Mou, X.Y. Jiang, Hydrogels Incorporating Au@ polydopamine nanoparticles: robust performance for optical sensing. Anal. Chem. 90(19), 11423–11430 (2018)

    Article  CAS  Google Scholar 

  93. S. Lim, J.E. Song, J.A. La et al., Gold nanospheres assembled on hydrogel colloids display a wide range of thermoreversible changes in optical bandwidth for various plasmonic-based color switches. Chem. Mater. 26(10), 3272–3279 (2014)

    Article  CAS  Google Scholar 

  94. J.T. Zhang, L.L. Wang, D.N. Lamont et al., Fabrication of large-area two-dimensional colloidal crystals. Angew. Chem. Int. Ed. 51(25), 6117–6220 (2012)

    Article  CAS  Google Scholar 

  95. Z.F. Sun, F.C. Lv, L.J. Cao et al., Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers. Angew. Chem. Int. Ed. 54(27), 7944–7948 (2015)

    Article  CAS  Google Scholar 

  96. M.M.W. Muscatello, S.A. Asher, Poly (vinyl alcohol) rehydratable photonic crystal sensor materials. Adv. Funct. Mater. 18(8), 1186–1193 (2008)

    Article  CAS  Google Scholar 

  97. Y. Liu, Y.J. Zhang, Y. Guan, New polymerized crystalline colloidal array for glucose sensing. Chem. Commun. (14), 1867–1869 (2009)

    Google Scholar 

  98. A.K. Yetisen, N. Jiang, A. Fallahi et al., Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater. 29(15), 1606380 (2017)

    Article  CAS  Google Scholar 

  99. H.L. Li, D.D. Men, Y. Li et al., Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. J. Colloid Interface Sci. 505, 467–475 (2017)

    Article  CAS  Google Scholar 

  100. X. Fei, T. Lu, J. Ma et al., Bioinspired polymeric photonic crystals for high cycling pH-sensing performance. ACS Appl. Mater. Interfaces 8(40), 27091–27098 (2016)

    Article  CAS  Google Scholar 

  101. H. Saito, Y. Takeoka, M. Watanabe Simple and precision design of porous gel as a visible indicator for ionic species and concentration. Chem. Commun. 0, 2126–2127 (2003)

    Google Scholar 

  102. Z.Y. Cai, A. Sasmal, X.Y. Liu et al., Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection. ACS Sens. 2(10), 1474–1481 (2017)

    Article  CAS  Google Scholar 

  103. S.A. Asher, A.C. Sharma, A.V. Goponenko et al., Photonic crystal aqueous metal cation sensing materials. Anal. Chem. 75(7), 1676–1683 (2003)

    Article  CAS  Google Scholar 

  104. F. Xue, Z.H. Meng, F.Y. Wang et al., A 2-D photonic crystal hydrogel for selective sensing of glucose. J. Mater. Chem. A 2(25), 9559–9565 (2014)

    Article  CAS  Google Scholar 

  105. A.C. Sharma, T. Jana, R. Kesavamoorthy et al., A general photonic crystal sensing motif: creatinine in bodily fluids. J. Am. Chem. Soc. 126(9), 2971–2977 (2004)

    Article  CAS  Google Scholar 

  106. F. Horkay, I. Tasaki, P.J. Basser, Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromol 1(1), 84–90 (2000)

    Article  CAS  Google Scholar 

  107. D. Nakayama, Y. Takeoka, M. Watanabe et al., Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. Angew. Chem. Int. Ed. 115(35), 4329–4332 (2003)

    Article  Google Scholar 

  108. K.W. Kimble, J.P. Walker, D.N. Finegold et al., Progress toward the development of a point-of-care photonic crystal ammonia sensor. Anal. Bioanal. Chem. 385(4), 678–685 (2006)

    Article  CAS  Google Scholar 

  109. Z.Y. Cai, N.L. Smith, J.T. Zhang et al., Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 87(10), 5013–5025 (2015)

    Article  CAS  Google Scholar 

  110. A. Bal, B. Özkahraman, Z. Özbaş, Preparation and characterization of pH responsive poly (methacrylic acid-acrylamide-N-hydroxyethyl acrylamide) hydrogels for drug delivery systems. J. Appl. Polym. Sci. 133(13), 43226 (2016)

    Article  CAS  Google Scholar 

  111. S. Nesrinne, A. Djamel, Synthesis, characterization and rheological behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Arab. J. Chem. 10(4), 539–547 (2017)

    Article  CAS  Google Scholar 

  112. K. Lee, S.A. Asher, Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 122(39), 9534–9537 (2000)

    Article  CAS  Google Scholar 

  113. Y. Zhang, Y.M. Guo, X.Y. Jiang et al., Nanomaterials for ultrasensitive protein detection. Adv. Mater. 25(28), 3802–3819 (2013)

    Article  CAS  Google Scholar 

  114. J.S. Sun, Y.L. Xianyu, X.Y. Jiang, Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev. 43(17), 6239–6253 (2014)

    Article  CAS  Google Scholar 

  115. Y.P. Chen, Y.L. Xianyu, X.Y. Jiang, Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 50(2), 310–319 (2017)

    Article  CAS  Google Scholar 

  116. D.L. Liu, F. Zhou, Y. Li et al., Black gold: plasmonic colloidosomes with broadband absorption self-assembled from monodispersed Au nanospheres by using a reverse emulsion system. Angew. Chem. Int. Ed. 54(33), 9596–9600 (2015)

    Article  CAS  Google Scholar 

  117. D.L. Liu, C.C. Li, Y. Li et al., Capillary gradient-induced self-assembly of periodic Au spherical nanoparticle arrays on an ultralarge scale via a bisolvent system at air/water interface. Adv. Mater. Interfaces 4(10), 1600976 (2017)

    Article  CAS  Google Scholar 

  118. P.J. Yan, F. He, W. Wang et al., Novel membrane detector based on smart nanogels for ultrasensitive detection of trace threat substances. ACS Appl. Mater. Interfaces 10(42), 36425–36434 (2018)

    Article  CAS  Google Scholar 

  119. J.H. Holtz, J.S.W. Holtz, C.H. Munro et al., Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Anal. Chem. 70(4), 780–791 (1998)

    Article  CAS  Google Scholar 

  120. Y. Wang, F. Yang, X.R. Yang, Colorimetric detection of mercury(II) Ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl. Mater. Interfaces 2(2), 339–342 (2010)

    Article  CAS  Google Scholar 

  121. X.F. Ding, L.T. Kong, J. Wang et al., Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces 5, 7072–7078 (2013)

    Article  CAS  Google Scholar 

  122. J.H. Huang, X. Gao, Z.G. Li et al., Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal. Chem. 86, 3209–3215 (2014)

    Article  CAS  Google Scholar 

  123. B.F. Ye, H.B. Ding, Y. Cheng et al., Photonic crystal microcapsules for label-free multiplex detection. Adv. Mater. 26(20), 3270–3274 (2014)

    Article  CAS  Google Scholar 

  124. E. Kokufuta, Y.Q. Zhang, T. Tanaka et al., Effects of surfactants on the phase transition of poly (N-isopropylacrylamide) gel. Macromolecules 26(5), 1053–1059 (1993)

    Article  CAS  Google Scholar 

  125. J. Sjöström, L. Piculell, Simple gel swelling experiments distinguish between associating and nonassociating polymer-surfactant pairs. Langmuir 17(13), 3836–3843 (2001)

    Article  CAS  Google Scholar 

  126. W. Xue, I.W. Hamley, Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with a hydrophobic comonomer. Polymer 43(10), 3069–3077 (2002)

    Article  CAS  Google Scholar 

  127. J.T. Zhang, N. Smith, S.A. Asher, Two-dimensional photonic crystal surfactant detection. Anal. Chem. 84(15), 6416–6420 (2012)

    Article  CAS  Google Scholar 

  128. F. Tanaka, T. Koga, H. Kojima et al., Temperature and tension-induced coil-globule transition of poly (N-isopropylacrylamide) chains in water and mixed solvent of water/methanol. Macromolecules 42(4), 1321–1330 (2009)

    Article  CAS  Google Scholar 

  129. F.M. Winnik, H. Ringsdorf, J. Venzmer, Methanol-water as a co-nonsolvent system for poly (N-isopropylacrylamide). Macromolecules 23(8), 2415–2416 (1990)

    Article  CAS  Google Scholar 

  130. G. Zhang, C. Wu, The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution. J. Am. Chem. Soc. 123(7), 1376–1380 (2001)

    Article  CAS  Google Scholar 

  131. E.T. Tian, J.X. Wang, Y.M. Zheng et al., Colorful humidity sensitive photonic crystal hydrogel. J. Mater. Chem. 18(10), 1116–1122 (2008)

    Article  CAS  Google Scholar 

  132. R.Y. Xuan, Q.S. Wu, Y.D. Yin et al., Magnetically assembled photonic crystal film for humidity sensing. J. Mater. Chem. 21(10), 3672–3676 (2011)

    Article  CAS  Google Scholar 

  133. V.L. Alexeev, A.C. Sharma, A.V. Goponenko et al., High ionic strength glucose-sensing photonic crystal. Anal. Chem. 75(10), 2316–2323 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Science Fund for Distinguished Young Scholars (Grant No. 51825103), the National Key Research and Development Program of China (Grant No. 2017YFA0207101), and the Natural Science Foundation of China (Grant Nos. 51771188, 51571189, and 51701054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Men, D., Zhang, H., Li, Y. (2020). Hydrogel Responsive Nanomaterials for Colorimetric Chemical Sensors. In: Sun, Z., Liao, T. (eds) Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, vol 297. Springer, Cham. https://doi.org/10.1007/978-3-030-39994-8_5

Download citation

Publish with us

Policies and ethics