Skip to main content
Log in

Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: a (short) biased review

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

The near-Earth space is a unique laboratory to explore turbulence and energy dissipation processes in magnetized plasmas thanks to the availability of high-quality data from various orbiting spacecraft, such as Wind, Stereo, Cluster, Themis, and the more recent one, the NASA Magnetospheric Multiscale (MMS) mission. In comparison with the solar wind, plasma turbulence in the magnetosheath remains far less explored, possibly because of the complexity of the magnetosheath dynamics that challenges any “realistic” theoretical modeling of turbulence in it. This complexity is due to different reasons such as the confinement of the magnetosheath plasma between two dynamical boundaries, namely the bow shock and the magnetopause; the high variability of the SW pressure that “shakes” and compresses continuously the magnetosheath plasma; and the presence of large-density fluctuations and temperature anisotropies that generate various instabilities and plasma modes. In this paper, we will review some results that we have obtained in recent years on plasma turbulence in the SW and the magnetosheath, both at the magnetohydrodynamics (MHD) and the sub-ion (kinetic) scales, using the state-of-the-art theoretical models and in situ spacecraft observations. We will focus on three major features of the plasma turbulence, namely its nature and scaling laws, the role of small-scale coherent structures in plasma heating, and the role of density fluctuations in enhancing the turbulent energy cascade rate. The latter is estimated using (analytical) exact laws derived for compressible MHD theories applied to in situ observations from the Cluster and Themis spacecraft. Finally, we will discuss some current trends in space plasmas turbulence research and future space missions dedicated to this topic that are currently being prepared within the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(adapted from Huang et al. (2017a))

Fig. 6
Fig. 7
Fig. 8

(adapted from Hadid et al. (2017)

Fig. 9

(adapted from Hadid et al. (2017))

Fig. 10
Fig. 11

(adapted from Hadid et al. (2018))

Fig. 12

(adapted from Hadid et al. (2018))

Fig. 13

(adapted from Hadid et al. (2018))

Fig. 14

(adapted from Hadid et al. (2018))

Fig. 15

(adapted from Huang et al. (2017a))

Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. There is still a debate as to whether the scaling of the PSDs of the magnetic and the velocity fluctuations this range follow the Kolmogorov spectrum \(k^{-5/3}\) or the IK prediction \(k-{3/2}\). This point will not be further discussed in this paper.

  2. In fact, the phase speeds must be smaller than the flow speed projected onto the wave vector \(\mathbf{k}\) as can be seen in Eq. 1.

  3. More rigorously, estimating \(\omega _{\mathrm{plas}}\) requires only measuring one component of the k-vector, namely component parallel to the flow V. However, once \(\omega _{plas}\) is determined the full k-vector is needed to determine 3D dispersion relations, i.e., \(\omega _{\mathrm{plas}}= \omega _{\mathrm{plas}}(\mathbf{k})\).

References

  • O. Alexandrova, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, J.-M. Bosqued, M. André, Alfvén vortex filaments observed in magnetosheath downstream of a quasi-perpendicular bow shock. J. Geophys. Res. 111, A12208 (2006)

    ADS  Google Scholar 

  • O. Alexandrova, C. Lacombe, A. Mangeney, Spectra and anisotropy of magnetic fluctuations in the earth’s magnetosheath: cluster observations. Ann. Geophys. 26, 3585 (2008)

    ADS  Google Scholar 

  • O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin, M. Maksimovic, Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. 760, 121 (2012)

    ADS  Google Scholar 

  • N. Andrés, S. Galtier, F. Sahraoui, Exact scaling laws for helical three-dimensional two-fluid turbulent plasmas. Phys. Rev. E 94, 063206 (2016)

    ADS  Google Scholar 

  • N. Andrés, F. Sahraoui, Alternative derivation of exact law for compressible and isothermal magnetohydrodynamics turbulence. Phys. Rev. E 96, 053205 (2017)

    ADS  Google Scholar 

  • N. Andrés, S. Galtier, F. Sahraoui, Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence. Phys. Rev. E 97, 013204 (2018)

    ADS  Google Scholar 

  • N. Andrés, S. Galtier, F. Sahraoui, L.Z. Hadid, P. Dmitruk, P.D. Mininni, Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. J. Plasmas Phys. 84, 905840404 (2018)

    Google Scholar 

  • S.A. Balbus, J.F. Hawley, Rev. Mod. Phys. 70, 1 (1998)

    ADS  Google Scholar 

  • S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Rème, Phys. Rev. Lett. 94, 215002 (2005)

    ADS  Google Scholar 

  • S. Banerjee, S. Galtier, Phys. Rev. E 87, 013019 (2013)

    ADS  Google Scholar 

  • S. Banerjee, L.Z. Hadid, F. Sahraoui, S. Galtier, Scaling of compressible magnetohydrodynamic turbulence in the fast solar wind. Astrophys. J. Lett. 829, L27 (2016)

    ADS  Google Scholar 

  • S. Banerjee, S. Galtier, J. Phys. A Math. Theor. 50, 015501 (2017)

    ADS  Google Scholar 

  • A. Brandenburg, E. Nordlund, Astrophys. J. Suppl. (2011). arXiv:0912.1340v2

  • G. Belmont, L. Rezeau, J. Geophys. Res. 106, 10751–10760 (2001)

    ADS  Google Scholar 

  • S. Boldyrev, J.C. Perez, Spectrum of kinetic-Alfv’en turbulence. ApJL 758, L44 (2012)

    ADS  Google Scholar 

  • S. Boldyrev, K. Horaites, Q. Xia, J.C. Perez, Toward a theory of astrophysical plasma turbulence at subproton scales. ApJ 777, 41 (2013)

    ADS  Google Scholar 

  • S. Bourouaine, J.C. Perez, On the limitations of Taylor’s hypothesis in parker solar probe’s measurements near the Alfvén critical point. ApJL 858, L20 (2018)

    ADS  Google Scholar 

  • R. Bruno, V. Carbone, Living Rev. Solar Phys. 2, 4 (2005)

    ADS  Google Scholar 

  • L. Bruno, D.Telloni Trenchi, Spectral slope variation at proton scales from fast to slow solar wind. Astrophys. J. Lett. 793, L15 (2014)

    ADS  Google Scholar 

  • J.L. Burch, T.E. Moore, R.B. Torbert, B.L. Giles, Magnetospheric multiscale overview and science objectives. Space Sci. Rev. (2016). https://doi.org/10.1007/s11214-015-0164-9

  • V. Carbone, R. Marino, L. Sorriso-Valvo et al., Phys. Rev. Lett. 103, 061102 (2009)

    ADS  Google Scholar 

  • B.D.G. Chandran, B. Li, B.N. Rogers, E. Quataert, K. Germaschewski, Perpendicular Ion heating by low-frequency Alfven-wave turbulence in the solar wind. Astrophys. J. 720, 503–515 (2010)

    ADS  Google Scholar 

  • B.D.G. Chandran, Parametric instability, inverse cascade and the 1/f range of solar-wind turbulence. J. Plasma Phys. 84, 905840106 (2018)

    Google Scholar 

  • A. Chasapis, A. Retino, F. Sahraoui, A. Vaivads, YuV Khotyaintsev, D. Sundkvist, A. Greco, L. Sorriso-Valvo, P. Canu, Thin current sheets and associated electron heating in turbulent space plasma. Astrophys. J. Lett. 804, L1 (2015)

    ADS  Google Scholar 

  • J.T. Coburn et al., Astrophys. J. 786, 52 (2014)

    ADS  Google Scholar 

  • J.T. Coburn et al., Philos. Trans. R. Soc. A 373, 20140150 (2015)

    ADS  Google Scholar 

  • C.H.K. Chen, S. Boldyrev, Nature of kinetic scale turbulence in the earths magnetosheath. Astrophys. J. 842, 122 (2017)

    ADS  Google Scholar 

  • C.H.K. Chen, K.G. Klein, G.G. Howes, Evidence for electron Landau damping in space plasma turbulence. Nat. Commun. 10, 740 (2019)

    ADS  Google Scholar 

  • S.S. Cerri, F. Califano, F. Jenko, D. Told, F. Rincon, Subproton-scale cascades in solar wind turbulence: driven hybrid-kinetic simulations. Astrophys. J. Lett. 822, L12 (2016)

    ADS  Google Scholar 

  • S.S. Cerri, F. Califano, Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations. New J. Phys. 19, 025007 (2017)

    ADS  Google Scholar 

  • S.S. Cerri, M.W. Kunz, F. Califano, Dual phase-space cascades in 3D hybrid-Vlasov-Maxwell turbulence. Astrophys. J. Lett. 856, L13 (2018)

    ADS  Google Scholar 

  • J. Cho, A. Lazarian, Compressible sub-Alfvenic MHD turbulence in low-plasmas. Phys. Rev. Lett. 88, 245001 (2002)

    ADS  Google Scholar 

  • P.J. Coleman Jr., ApJ 153, 371 (1968)

    ADS  Google Scholar 

  • S.R. Cranmer, Ensemble simulations of proton heating in the solar wind via turbulence and ion cyclotron resonance. ApJ Suppl. Ser. 213, 16 (2014)

    ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B.J. Albright, B. Bergen, K.J. Bowers, Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7, 539–542 (2011)

    Google Scholar 

  • P.H. Diamond, S.-I. Itoh, K. Itoh, T.S. Hahm, Plasma Phys. Control Fusion 47, R35 (2005)

  • P. Dmitruk, W.H. Matthaeus, Phys. Rev. E 76, 036305 (2007)

    ADS  Google Scholar 

  • P. Dmitruk, P.D. Mininni, A. Pouquet, Phys. Rev. E 83, 066318 (2011)

    ADS  Google Scholar 

  • C. Federrath, Magnetic field amplification in turbulent astrophysical plasmas. J. Plasma Phys. 82, 535820601 (2016)

    Google Scholar 

  • R. Ferrand, S. Galtier, F. Sahraoui, R. Meyrand, N. Andrés, S. Banerjee, On exact laws in incompressible Hall magnetohydrodynamic turbulence. Astrophys. J. (2019)

  • N.J. Fox, M.C. Velli, S.D. Bale, R. Decker, A. Driesman, R.A. Howard, J.C. Kasper, J. Kinnison, M. Kusterer, D. Lario, M.K. Lockwood, D.J. McComas, N.E. Raouafi, A. Szabo, The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7–48 (2016)

    ADS  Google Scholar 

  • U. Frisch, Turbulence; The Legacy of A.N. Kolmogorov (Cambridge Univ. Press, Cambridge, 1995)

    MATH  Google Scholar 

  • L. Franci, S.S. Cerri, F. Califano, S. Landi, E. Papini, A. Verdini, L. Matteini, F. Jenko, P. Hellinger, Magnetic reconnection as a driver for a sub-ion-scale cascade in plasma turbulence. ApJL 850, L16 (2017)

    ADS  Google Scholar 

  • S. Galtier, Wave turbulence in incompressible hall magnetohydrodynamics. J. Plasma Phys. 72(5), 721–769 (2006a)

    ADS  Google Scholar 

  • S. Galtier, Phys. Rev. E 77, 015302 (2006b)

    ADS  Google Scholar 

  • S. Galtier, S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011)

    ADS  Google Scholar 

  • S.P. Gary, C.W. Smith, J. Geophys. Res. 114, A12105 (2009)

    ADS  Google Scholar 

  • S.P. Gary, O. Chang, J. Wang, Astrophys. J. 755, 142 (2012)

    ADS  Google Scholar 

  • D.J. Gershman, J.C. Dorelli, A.F. Viñas, L.A. Avanov, U. Gliese, A.C. Barrie, V. Coffey, M. Chandler, C. Dickson, E.A. MacDonald, C. Salo, M. Holland, Y. Saito, J.A. Sauvaud, B. Lavraud, W.R. Paterson, R. Torbert, L.J. Chen, K. Goodrich, C.T. Russell, R.J. Strangeway, B.L. Giles, C.J. Pollock, T.E. Moore, J.L. Burch, Electron dynamics in a subproton-gyroscale magnetic hole. Geophys. Res. Lett. 43, 4112–4118 (2016). https://doi.org/10.1002/2016GL068545

    Article  ADS  Google Scholar 

  • G. Gogoberidze, S. Perri, V. Carbone, The Yaglom law in the expanding solar wind. ApJ 769, 111 (2013)

    ADS  Google Scholar 

  • M.L. Goldstein, M.D. Roberts, C. Fitch, Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 11519 (1994)

    ADS  Google Scholar 

  • M.L. Goldstein, A.D. Roberts, W.H. Matthaeus, Magnetohydrodynamic turbulence in the solar wind. Annu. Rev. Astron. Astrophys. 33, 283–325 (1995)

    ADS  Google Scholar 

  • B. Grison, F. Sahraoui, B. Lavraud, T. Chust, N. Cornilleau-Wehrlin, H. Rème, A. Balogh, M. André, Wave particle interaction in the distant cusp region: a cluster case study. Ann. Geophys. 23, 3699–3713 (2005)

    ADS  Google Scholar 

  • L.Z. Hadid, F. Sahraoui, K.H. Kiyani, A. Retino, R. Modolo, P. Canu, A. Masters, M.K. Dougherty, Nature of the mhd and kinetic scale turbulence in the magnetosheath of saturn: cassini observations. Astrophys. J. Lett. 813, L29 (2015)

    ADS  Google Scholar 

  • L.Z. Hadid, F. Sahraoui, S. Galtier, Energy cascade rate in compressible fast and slow solar wind turbulence. Astrophys. J. 838, 9 (2017)

    ADS  Google Scholar 

  • L.Z. Hadid, F. Sahraoui, S. Galtier, S.Y. Huang, Compressible magnetohydrodynamic turbulence in the Earth’s magnetosheath: estimation of the energy cascade rate using in situ spacecraft data. Phys. Rev. Lett. 120, 055102 (2018)

    ADS  Google Scholar 

  • J.S. He, E. Marsch, C.Y. Tu, Q.G. Zong, S. Yao, H. Tian, J. Geophys. Res. 116, A06207 (2011)

    ADS  Google Scholar 

  • J.S. He, C. Tu, E. Marsch, S. Yao, Astrophys. J. Lett. 745, L8 (2012)

    ADS  Google Scholar 

  • J.S. He, L. Wang, C. Tu, E. Marsch, Q. Zong, Evidence of Landau and cyclotron resonance between protons and kinetic waves in solar wind turbulence. Astrophys. J. 800, L31 (2015)

    ADS  Google Scholar 

  • P. Hellinger, P.M. Trávnícek, Š. Štverák, L. Matteini, M. Velli, Proton thermal energetics in the solar wind: Helios reloaded. JGR 118, 1351–1365 (2013)

    Google Scholar 

  • P. Hellinger, A. Verdini, S. Landi, L. Franci, L. Matteini, Von Kármán–Howarth equation for hall magnetohydrodynamics: hybrid simulations. Astrophys. J. 857, L19 (2018)

    ADS  Google Scholar 

  • T.S. Horbury, E.A. Lucek, A. Balogh, I. Dandouras, H. Réme, Motion and orientation of magnetic field dips and peaks in the terrestrial magnetosheath. J. Geophys. Res. 109, A09209 (2004)

    ADS  Google Scholar 

  • G.G. Howes, S.C. Cowley, W. Dorland, G.W. Hammett, E. Quataert, A.A. Schekochihin, Model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113(A12), A05103 (2008)

    ADS  Google Scholar 

  • G.G. Howes, J.M. TenBarge, W. Dorland, E. Quataert, A. Schekochihin, R. Numata, T. Tatsuno, Phys. Rev. Lett. 107, 035004 (2011)

    ADS  Google Scholar 

  • G.G. Howes, K.G. Klein, J.M. TenBarge, Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind. ApJ 789, 106 (2014)

    ADS  Google Scholar 

  • G.G. Howes, K.G. Klein, T.C. Li, Diagnosing collision-less energy transfer using field-particle correlations: Vlasov–Poisson plasmas. J. Plasma Phys. 83, 705830102 (2017)

    Google Scholar 

  • S.Y. Huang, M. Zhou, F. Sahraoui, X.H. Deng, Y. Pang, Z.G. Yuan, Q. Wei, J.F. Wang, X.M. Zhou, Wave properties in the magnetic reconnection diffusion region with high \(\beta \): application of the k-filtering method to cluster multispacecraft data. J. Geophys. Res. 115, A12211 (2010). https://doi.org/10.1029/2010JA015335

    Article  ADS  Google Scholar 

  • S.Y. Huang, F. Sahraoui, X.H. Deng, J.S. He, Z.G. Yuan, M. Zhou, Y. Pang, H.S. Fu, Kinetic turbulence in the terrestrial magnetosheath: cluster observations. Astrophys. J. Lett. 789, L28 (2014)

    ADS  Google Scholar 

  • S.Y. Huang, F. Sahraoui, A. Retino, O. Le Contel, Z.G. Yuan, A. Chasapis, N. Aunai, H. Breuillard, X.H. Deng, M. Zhou, H.S. Fu, Y. Pang, D.D. Wang, R.B. Torbert, K.A. Goodrich, R.E. Ergun, Y.V. Khotyaintsev, P.-A. Lindqvist, C.T. Russell, R.J. Strangeway, W. Magnes, K. Bromund, H. Leinweber, F. Plaschke, B.J. Anderson, C.J. Pollock, B.L. Giles, T.E. Moore, J.L. Burch, Geophys. Res. Lett. 43, 7850–7858 (2016)

    ADS  Google Scholar 

  • S.Y. Huang, L.Z. Hadid, F. Sahraoui, Z.G. Yuan, X.H. Deng, On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence. Astrophys. J. Lett. 836, L10 (2017)

    ADS  Google Scholar 

  • S.Y. Huang, F. Sahraoui, Z.G. Yuan et al., Magnetospheric multiscale observations of electron vortex magnetic hole in the turbulent magnetosheath plasma. Astrophys. J. Lett. 836, L27 (2017)

    ADS  Google Scholar 

  • S.Y. Huang, F. Sahraoui, Z.G. Yuan, O. Le Contel, H. Breuillard, J.S. He, J.S. Zhao, H.S. Fu, M. Zhou, X.H. Deng, X.Y. Wang, J.W. Du, X.D. Yu, D.D. Wang, C.J. Pollock, R.B. Torbert, J.L. Burch, Observations of whistler waves correlated with electron-scale coherent structures in the magnetosheath turbulent plasma. ApJ 861, 29 (2018)

    ADS  Google Scholar 

  • S.Y. Huang, F. Sahraoui, Testing the Taylor frozen-in-flow assumption at electron scales in solar wind turbulence. ApJ 876(2), 138 (2019)

    ADS  Google Scholar 

  • P.S. Iroshnikov, Astron. Zh. 40, 742 (1963)

    ADS  Google Scholar 

  • H. Karimabadi, V. Roytershteyn, M. Wan, W.H. Matthaeus, W. Daughton, P. Wu, M. Shay, B. Loring, J. Borovsky, E. Leonardis, S.C. Chapman, T.K.M. Nakamura, Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20, 012303 (2013)

    ADS  Google Scholar 

  • H. Karimabadi, V. Roytershteyn, H.X. Vu, Y.A. Omelchenko, J. Scudder, W. Daughton, A. Dimmock, K. Nykyri, M. Wan, D. Sibeck, M. Tatineni, A. Majumdar, B. Loring, B. Geveci, The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas 21, 062308 (2014)

    ADS  Google Scholar 

  • J.C. Kasper, A.J. Lazarus, S.P. Gary, Hot solar-wind helium: direct evidence for local heating by Alfvén-cyclotron dissipation. Phys. Rev. Lett. 101, 261103 (2008)

    ADS  Google Scholar 

  • K.H. Kiyani, C. Chapman, YuV Khotyaintsev, M.W. Dunlop, F. Sahraoui, Phys. Rev. Lett. 103, 075006 (2009)

    ADS  Google Scholar 

  • K.H. Kiyani, C. Chapman, F. Sahraoui, B. Hnat, O. Fauvarque, YuV Khotyaintsev, Enhanced magnetic compressibility and isotropic scale invariance at sub-ion larmor scales in solar wind turbulence. Astrophys. J. 763, 10 (2013)

    ADS  Google Scholar 

  • K.G. Klein, G.G. Howes, J.M. Tenbarge, Diagnosing collisionless energy transfer using field-particle correlations: gyrokinetic turbulence. J. Plasma Phys. 83, 535830401 (2017)

    Google Scholar 

  • S. Kobayashi, F. Sahraoui, T. Passot, D. Laveder, P.L. Sulem, S.Y. Huang, P. Henri, R. Smets, Three-dimensional simulations and spacecraft observations of sub-ion scale turbulence in the solar wind: influence of Landau damping. Astrophys. J. 839, 122 (2017)

    ADS  Google Scholar 

  • A.N. Kolmogorov, Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS 30, 301 (1941)

    Google Scholar 

  • R.H. Kraichnan, Phys. Fluids 8, 13851387 (1965)

    Google Scholar 

  • A.G. Kritsuk, R. Wagner, M.L. Norman, J. Fluid Mech. 729, R1 (2013)

    ADS  Google Scholar 

  • M.W. Kunz, A.A. Schekochihin, J.M. Stone, Firehose and mirror instabilities in a collisionless shearing plasma. Phys. Rev. Lett. 112, 205003 (2014)

    ADS  Google Scholar 

  • C. Lacombe, A.A. Samsonov, A. Mangeney, M. Maksimovic, N. Cornilleau-Wehrlin, C.C. Harvey, J.-M. Bosqued, P. Travnicek, Ann. Geophys. 24, 3523–3531 (2006)

    ADS  Google Scholar 

  • L. Lacombe, O. Alexandrova, L. Matteini, O. Santolik, N. Cornilleau-Wehrlin, A. Mangeney, Y. de Conchy, M. Maksimovic, Whistler mode waves and the electron heat flux in the solar wind: cluster observations. ApJ 796, 5 (2014)

    ADS  Google Scholar 

  • L.D. Landau, On the vibrations of the electronic plasma. J. Phys. 10, 25 (1946)

    MathSciNet  MATH  Google Scholar 

  • R.J. Leamon, C.W. Smith, N.F. Ness, W.H. Matthaeus, H.K. Wong, J. Geophys. Res. 103, 4775 (1998)

    ADS  Google Scholar 

  • Y. Liu, J.D. Richardson, J.W. Belcher, J.C. Kasper, Thermodynamic structure of collision-dominated expanding plasma: heating of interplanetary coronal mass ejections. JGR 111, A01102 (2006). https://doi.org/10.1029/2005JA011329

    Article  ADS  Google Scholar 

  • N.F. Loureiro, A.A. Schekochihin, A. Zocco, Fast collisionless reconnection and electron heating in strongly magnetized plasmas. PRL 111, 025002 (2013)

    ADS  Google Scholar 

  • B. MacBride, C.W. Smith, M. Forman, Astrophys. J. 679, 1644 (2008)

    ADS  Google Scholar 

  • A. Mangeney, C. Lacombe, M. Maksimovic, A.A. Samsonov, N. Cornilleau-Wehrlin, C.C. Harvey, J.-M. Bosqued, P. Travnicek, Cluster observations in the magnetosheath—part 1: anisotropies of the wave vector distribution of the turbulence at electron scales. Ann. Geophys. 24, 3507 (2006)

    ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone et al., Astrophys. J. Lett. 677, L71 (2008)

    ADS  Google Scholar 

  • R. Marino, L. Sorriso-Valvo, V. Carbone et al., Planet. Space Sci. 59, 592 (2011)

    ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, J. Geophys. Res. 87, 6011 (1982)

    ADS  Google Scholar 

  • W.H. Matthaeus, J.J. Ambrosiano, M.L. Goldstein, Particle acceleration by turbulent magnetohydrodynamic reconnection. PRL 53, 15 (1984)

    Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, S.R. Lantz, Phys. Fluids 29, 1504 (1986)

    ADS  MathSciNet  Google Scholar 

  • W.H. Matthaeus, S. Oughton, D.H. Pontius Jr., Y. Zhou, Evolution of energy-containing turbulent eddies in the solar wind. JGR 99, 19267 (1994)

    ADS  Google Scholar 

  • W.H. Matthaeus, S. Dasso, J.M. Weygand, L.J. Milano, C.W. Smith, M.G. Kivelson, Phys. Rev. Lett. 95, 231101 (2005)

    ADS  Google Scholar 

  • W.H. Matthaeus, B. Breech, P. Dmitruk, Astrophys. J. 657, L121 (2007)

    ADS  Google Scholar 

  • W.H. Matthaeus, M. Velli, Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 145–168 (2011)

    ADS  Google Scholar 

  • W.H. Matthaeus, J.M. Weygand, S. Dasso, Ensemble space-time correlation of plasma turbulence in the solar wind. PRL 116, 245101 (2016)

    ADS  Google Scholar 

  • L. Matteini, D. Stansby, T.S. Horbury, C.H.K. Chen, On the 1/f spectrum in the solar wind and its connection with magnetic compressibility. ApJL 869, L32 (2018)

    ADS  Google Scholar 

  • R. Meyrand, S. Galtier, A universal law for solar-wind turbulence at electron scales. Astrophys. J. 721, 1421–1424 (2010). https://doi.org/10.1088/0004-637X/721/2/1421

    Article  ADS  Google Scholar 

  • M. Meyrand, A. Kanekar, W. Dorland, A.A. Schekochihin, Fluidization of collisionless plasma turbulence. PNAS 116(4), 1185–1194 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • D. Müller, R.G. Marsden, O.C. St. Cyr, H.R. Gilbert, the Solar Orbiter Team, Solar orbiter exploring the sun-heliosphere connection. Solar Phys. 285, 25–70 (2013). https://doi.org/10.1007/s11207-012-0085-7

  • Y. Narita, K.H. Glassmeier, F. Sahraoui, M.L. Goldstein, Phys. Rev. Lett. 104, 171101 (2010a)

    ADS  Google Scholar 

  • Y. Narita, F. Sahraoui, M.L. Goldstein, K.H. Glassmeier, J. Geophys. Res. 115, A04101 (2010b). https://doi.org/10.1029/2009JA014742

    Article  ADS  Google Scholar 

  • R. Numata, N.F. Loureiro, Ion and electron heating during magnetic reconnection in weakly collisional plasmas. J. Plasma Phys. 81, 305810201 (2015)

    Google Scholar 

  • K.T. Osman, M. Wan, W.H. Matthaeus, J.M. Weygand, S. Dasso, Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data. Phys. Rev. Lett. 107, 165001 (2011)

    ADS  Google Scholar 

  • K.T. Osman, W.H. Matthaeus, M. Wan, A.F. Rappazzo, Intermittency and local heating in the solar wind. Phys. Rev. Lett. 108, 261102 (2012)

    ADS  Google Scholar 

  • K.T. Osman, W.H. Matthaeus, K.H. Kiyani, B. Hnat, S.C. Chapman, Proton kinetic effects and turbulent energy cascade rate in the solar wind. Phys. Rev. Lett. 111, 201101 (2013)

    ADS  Google Scholar 

  • T. Passot, P.L. Sulem, A Model for the non-universal power law of the solar wind sub-ion-scale magnetic spectrum. Astrophys. J. Lett. 812, L37 (2015). https://doi.org/10.1088/2041-8205/812/2/L37

    Article  ADS  Google Scholar 

  • T. Passot, P.L. Sulem, Imbalanced kinetic Alfvén wave turbulence: from weak turbulence theory to nonlinear diffusion models for the strong regime. J. Plasma Phys. 85, 905850301 (2019). https://doi.org/10.1017/S0022377819000187

    Article  Google Scholar 

  • S. Perri, S. Servidio, A. Vaivads, F. Valentini, Numerical study on the validity of the Taylor hypothesis in space plasmas. ApJ Suppl. Ser. 231(1), 4 (2017)

    ADS  Google Scholar 

  • O.A. Pokhotelov, O.G. Onishchenko, R.Z. Sagdeev, M.A. Balikhin, L. Stenflo, Parametric interaction of kinetic Alfvén waves with convective cells. J. Geophys. Res. 109, A3 (2004)

    Google Scholar 

  • J.J. Podesta, J.E. Borovsky, S.P. Gary, A kinetic Alfven wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU. ApJ 712, 685 (2010)

    ADS  Google Scholar 

  • J.J. Podesta, J.M. TenBarge, Scale dependence of the variance anisotropy near the proton gyroradius scale: additional evidence for kinetic Alfvén waves in the solar wind at 1 AUJ. Geophys. Res. 117, A10106 (2012)

    ADS  Google Scholar 

  • J.J. Podesta, The need to consider ion Bernstein waves as a dissipation channel of solar wind turbulence. JGR 117, A07101 (2012). https://doi.org/10.1029/2012JA017770

    Article  ADS  Google Scholar 

  • J.J. Podesta, Evidence of kinetic Alfvěn waves in the solar wind at 1 AU. Sol. Phys. 286, 529–548 (2013). https://doi.org/10.1007/s11207-013-0258-z

    Article  ADS  Google Scholar 

  • H. Politano, A. Pouquet, Phys. Rev. E 57, 21 (1998)

    ADS  Google Scholar 

  • C. Pollock et al., Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev. 199, 331 (2016). https://doi.org/10.1007/s11214-016-0245-4

    Article  ADS  Google Scholar 

  • A. Retino et al., Nat. Phys. 3, 236–238 (2007)

    Google Scholar 

  • O.W. Roberts, Y. Narita, C.P. Escoubet, Direct measurement of anisotropic and asymmetric wave vector spectrum in ion-scale solar wind turbulence. ApJL 851(1), L11 (2017)

    ADS  Google Scholar 

  • V. Roytershteyn, H. Karimabadi, A. Roberts, Generation of magnetic holes in fully kinetic simulations of collisionless turbulence. Philos. Trans. R. Soc. A 373(20), 140–151 (2015). https://doi.org/10.1098/rsta.2014.0151

    Article  Google Scholar 

  • C.T. Russell, Comments on the measurement of power spectra of the interplanetary magnetic field, in Solar Wind, Proceedings of a Conference held March 21–26, 1971, at the Asilomar Conference Grounds, Pacific Grove, Calif., ed. by C.P. Sonett, P.J. Coleman, J.M. Wilcox (NASA, Washington, DC, 1972), pp. 365–374

  • F. Sahraoui et al., J. Geophys. Res. 108, 1335 (2003)

    Google Scholar 

  • F. Sahraoui et al., Ann. Geophys. 22, 2283 (2004)

    ADS  Google Scholar 

  • F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, J.L. Pinçon, A. Balogh, Phys. Rev. Lett. 96, 075002 (2006)

    ADS  Google Scholar 

  • F. Sahraoui, S. Galtier, G. Belmont, J. Plasma Phys. 73, 723 (2007)

    ADS  Google Scholar 

  • F. Sahraoui, Diagnosis of magnetic structures and intermittency in space-plasma turbulence using the technique of surrogate data. Phys. Rev. E 78, 026402 (2008)

    ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, P. Robert, Y.V. Khotyaintsev, Phys. Rev. Lett. 102, 231102 (2009)

    ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Phys. Rev. Lett. 105, 131101 (2010a)

    ADS  Google Scholar 

  • F. Sahraoui, G. Belmont, M.L. Goldstein, L. Rezeau, J. Geophys. Res. 115, A04206 (2010b)

    ADS  Google Scholar 

  • F. Sahraoui, G. Belmont, M.L. Goldstein, New insight into short-wavelength solar wind fluctuations from Vlasov theory. Astrophys. J. 748, 100 (2012)

    ADS  Google Scholar 

  • F. Sahraoui, S. Huang, M.L. Goldstein, A. Rétino, P. Robert, J. De Patoul, ApJ 777, 15 (2013)

    ADS  Google Scholar 

  • F. Sahraoui, S.Y. Huang, On the broadening of the spectral slopes in sub-ion scales turbulence in the solar wind (2019) (submitted)

  • C.S. Salem, G.G. Howes, D. Sundkvist, S.D. Bale, C.C. Chaston, C.H.K. Chen, F.S. Mozer, Astrophys. J. Lett. 745, L9 (2012)

    ADS  Google Scholar 

  • A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophys. J. 182, 310 (2009)

    ADS  Google Scholar 

  • A.A. Schekochihin, J.T. Parker, E.G. Highcock, P.J. Dellar, W. Dorland, G.W. Hammett, Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence. J. Plasma Phys. 82, 905820212 (2016)

    Google Scholar 

  • S. Servidio, A. Greco, W.H. Matthaeus, K.T. Osman, P. Dmitruk, Statistical association of discontinuities and reconnection in magnetohydrodynamic turbulence. JGR 116, A09102 (2011). https://doi.org/10.1029/2011JA016569

    Article  ADS  Google Scholar 

  • S. Servidio, K.T. Osman, F. Valentini, D. Perrone, F. Califano, S. Chapman, W.H. Matthaeus, P. Veltri, Proton kinetic effects in vlasov and solar wind turbulence. Astrophys. J. Lett. 781, L27 (2014)

    ADS  Google Scholar 

  • S. Servidio, A. Chasapis, W.H. Matthaeus, D. Perrone, F. Valentini, T.N. Parashar, P. Veltri, D. Gershman, C.T. Russell, B. Giles, S.A. Fuselier, T.D. Phan, J. Burch, Magnetospheric multiscale observation of plasma velocity-space cascade: hermite representation and theory. PRL 119, 205101 (2017)

    ADS  Google Scholar 

  • J.A. Slavin, R.E. Holzer, Solar wind flow about the terrestrial planets: modeling bow shock position and shape. JGR 86(A13), 11401–11418 (1981)

    ADS  Google Scholar 

  • C.W. Smith et al., Astrophys. J. Lett. 645, L85 (2006)

    ADS  Google Scholar 

  • C.W. Smith et al., Phys. Rev. Lett. 103, 201101 (2009)

    ADS  Google Scholar 

  • L. Sorriso-Valvo, R. Marino, V. Carbone et al., Phys. Rev. Lett. 99, 115001 (2007)

    ADS  Google Scholar 

  • J.E. Stawarz, C.W. Smith, B.J. Vasquez et al., Astrophys. J. 697, 1119 (2009)

    ADS  Google Scholar 

  • O. Stawicki, S.P. Gary, H. Li, J. Geophys. Res. 106, 8273 (2001)

    ADS  Google Scholar 

  • Š. Štverák, P.M. Trávnícek, P. Hellinger, Electron energetics in the expanding solar wind. J. Geophys. Res. Space Phys. 120, 8177–8193 (2015). https://doi.org/10.1002/2015JA021368

    Article  ADS  Google Scholar 

  • P.L. Sulem, T. Passot, Landau fluid closures with nonlinear large-scale finite Larmor radius corrections for collisionless plasmas. J. Plasma Phys. 81 (2015)

  • D. Sundkvist, A. Retino, A. Vaivads, S. Bale, Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys. Rev. Lett. 99, 025004 (2007)

    ADS  Google Scholar 

  • A. Tjulin, J.L. Pinçon, F. Sahraoui, M. André, N. Cornilleau-Wehrlin, J. Geophys. Res. 110, A11224 (2005). https://doi.org/10.1029/2005JA011125

    Article  ADS  Google Scholar 

  • J.M. TenBarge, G.G. Howes, Current sheets and collisionless damping in kinetic plasma turbulence. ApJL 771, L27 (2013)

    ADS  Google Scholar 

  • A. Vavaids et al., Turbulence heating ObserveR: satellite mission proposal. J. Plasmas Phys. 82, 905820501 (2016)

    Google Scholar 

  • M. Velli, R. Grappin, A. Manegeney, Turbulent cascade of incompressible unidirectional Alfvén waves in the interplanetary medium. Phys. Rev. Lett. 63(17), 1807–1810 (1989)

    ADS  Google Scholar 

  • A. Verdini, G. Grappin, R. Pinto, M. Vellim, Astrophys. J. 33, 750 (2012)

    Google Scholar 

  • D. Verscharen, R.T. Wicks, et al., A case for electron astrophysics (2019). arXiv:1908.02206

  • A. Verdini, R. Grappin, Beyond the maltese cross: geometry of turbulence between 0.2 and 1 AU. Astrophys. J. 831, 179 (2016)

    ADS  Google Scholar 

  • Y. Voitenko, J. De Keyser, MHD-kinetic transition in imbalanced Alfvénic turbulence. ApJL 832, L20 (2016)

    ADS  Google Scholar 

  • M. Wan, S. Servidio, S. Oughton, W.H. Matthaeus, The third-order law for magnetohydrodynamic turbulence with shear: numerical investigation. Phys. Plasmas 17, 052307 (2010)

    ADS  Google Scholar 

  • R.T. Wicks, A. Mallet, T.S. Horbury, C.H.K. Chen, A.A. Schekochihin, J.J. Mitchell, Alignment and scaling of large-scale fluctuations in the solar wind. PRL 110, 025003 (2013)

    ADS  Google Scholar 

  • S.T. Yao, X.G. Wang, Q.Q. Shi, T. Pitkänen, M. Hamrin, Z.H. Yao, Z.Y. Li, X.F. Ji, A. De Spiegeleer, Y.C. Xiao, A.M. Tian, Z.Y. Pu, Q.G. Zong, C.J. Xiao, S.Y. Fu, H. Zhang, C.T. Russell, B.L. Giles, R.L. Guo, W.J. Sun, W.Y. Li, X.Z. Zhou, S.Y. Huang, J. Vaverka, M. Nowada, S.C. Bai, M.M. Wang, J. Liu, Observations of kinetic-size magnetic holes in the magnetosheath. J. Geophys. Res. Space Phys. 122, 1990–2000 (2017). https://doi.org/10.1002/2016JA023858

    Article  ADS  Google Scholar 

  • S.T. Yao, Q.Q. Shi, Z.H. Yao, J.X. Li, C. Yue, X. Tao, A.W. Degeling, Q.G. Zong, X.G. Wang, A.M. Tian, C.T. Russell, X.Z. Zhou, R.L. Guo, I.J. Rae, H.S. Fu, H. Zhang, L. Li, O. Le Contel, R.B. Torbert, R.E. Ergun, P.-A. Lindqvist, C.J. Pollock, B.L. Giles, Waves in kinetic-scale magnetic dips: MMS observations in the magnetosheath. Geophys. Res. Lett. 46(2), 523–533 (2019)

    ADS  Google Scholar 

  • E. Yordanova, A. Vaivads, M. André, S.C. Buchert, Z. Vörös, Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft. Phys. Rev. Lett. 100, 205003 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad Sahraoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahraoui, F., Hadid, L. & Huang, S. Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: a (short) biased review. Rev. Mod. Plasma Phys. 4, 4 (2020). https://doi.org/10.1007/s41614-020-0040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-020-0040-2

Keywords

Navigation