Skip to main content

Advertisement

Log in

State of the art in medical applications using non-thermal atmospheric pressure plasma

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Adapted from Akihiro Kono’s lecture notes)

Fig. 6
Fig. 7

From (Schutze et al. 1998)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

From Akihiro Kono’s lecture note

Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87
Fig. 88
Fig. 89
Fig. 90
Fig. 91

Similar content being viewed by others

Abbreviations

ALK:

Anaplastic lymphoma kinase

AMD:

Age-related macular degeneration

APF:

Aminophenyl Fluorescein

CNV:

Choroidal neovascularization

DAPI:

4′,6-diamidino-2-phenylindole

DBD:

Dielectric barrier discharge

DNA:

deoxyribonucleic acid

DSB:

Double-strand break

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

ESR:

Electron spin resonance

FACS:

Fluoresence-activated cell sorting

GFP:

Green fluorescent protein

H2DCFDA:

2′,7′-dichlorodihydrofluorescein diacetate

HNE:

4-Hydroxy-2-nonenal (HNE)

HPF:

Hydroxyphenyl Fluorescein

ICD:

Immunogenic cell death

iPS:

induced pluripotent stem cells

LDH:

Lactate dehydrogenase

LIF:

Laser-induced fluorescence

MAPK:

Mitogen-activated protein kinase

mRNA:

Messenger RNA

mTOR:

Mammalian target of rapamycin

mTORC1:

mTOR complex 1

mTORC2:

mTOR complex 2

MTS:

5-(3-carboxymethoxyphenyl)-2-(4,5-dimenthylthiazoly)-3-(4-sulfophenyl)tetrazo-lium, inner salt

NAC:

N-acetyl cysteine

NEAPP:

Non equilibrium atmospheric pressure plasma

NHDFs:

Normal human dermal fibroblasts

OES:

Optical emission spectroscopy

PAL:

Plasma-activated Ringer’s lactate solution

PAM:

PAM

PARP:

Poly (ADP-ribose) polymerase

PCR:

Polymerase chain reaction

PD-L1:

Programmed death ligand 1

PI:

Propidium iodide

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PIP3:

Phosphatidylinositol (3,4,5) trisphosphates

PTEN:

Phosphatase and tensin homolog

RAS:

Rat sarcoma

ROS:

Reactive oxygen species

RNA:

Ribonucleic acid

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RT-PCR:

Real-time polymerase chain reaction

SEM:

Scanning electron microscope

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

SDS polyacrylamide gel electrophoresis

SOD:

Superoxide dismutase

TBARS:

Thiobarbituric acid reactive substances

TALIF:

Two-photon absorption laser-induced fluorescence

TP53:

Tumor suppressor protein p53

TUNEL:

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling

VEGFR:

Vascular endothelial growth factor receptor

VUVAS:

Vacuum ultraviolet absorption spectroscopy

References

  • T. Adachi, S. Nonomura, M. Horiba, T. Hirayama, T. Kamiya, H. Nagasawa, H. Hara, Iron stimulates plasma-activated medium-induced A549 cell injury. Sci. Rep. 6, 20928 (2016)

    Article  ADS  Google Scholar 

  • T. Adachi, H. Tanaka, S. Nonomura, H. Hara, S.I. Kondo, M. Hori, Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic. Biol. Med. 79C, 28–44 (2014)

    Google Scholar 

  • S. Adler, M. Scherrer, F.D. Daschner, Costs of low-temperature plasma sterilization compared with other sterilization methods. J. Hosp. Infect. 40, 125–134 (1998)

    Article  Google Scholar 

  • H.J. Ahn, K.I. Kim, G. Kim, E. Moon, S.S. Yang, J.S. Lee, Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. Plos One 6, e28154 (2011)

    Article  ADS  Google Scholar 

  • Y. Akimoto, S. Ikehara, T. Yamaguchi, J. Kim, H. Kawakami, N. Shimizu, M. Hori, H. Sakakita, Y. Ikehara, Galectin expression in healing wounded skin treated with low-temperature plasma: comparison with treatment by electronical coagulation. Arch. Biochem. Biophys. 605, 86–94 (2016)

    Article  Google Scholar 

  • S. Arena, B. Bellosillo, G. Siravegna, A. Martinez, I. Canadas, L. Lazzari, N. Ferruz, M. Russo, S. Misale, I. Gonzalez et al., Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin. Cancer Res. 21, 2157–2166 (2015)

    Article  Google Scholar 

  • P. Awakowicz, N. Bibinov, M. Born, B. Busse, R. Gesche, A. Helmke, A. Kaemling, V. Kolb-Bachofen, R. Kovacs, S. Kuehn et al., Biological stimulation of the human skin applying health-promoting light and plasma sources. Contrib. Plasma Phys. 49, 641–647 (2009)

    Article  ADS  Google Scholar 

  • S. Bavcar, D.J. Argyle, Receptor tyrosine kinase inhibitors: molecularly targeted drugs for veterinary cancer therapy. Vet. Comp. Oncol. 10, 163–173 (2012)

    Article  Google Scholar 

  • S.G. Belostotskiy, R. Khandelwal, Q. Wang, V.M. Donnelly, D.J. Economou, N. Sadeghi, Measurement of electron temperature and density in an argon microdischarge by laser Thomson scattering. Appl. Phys. Lett. 92, 221507 (2008)

    Article  ADS  Google Scholar 

  • B. Benstaali, P. Boubert, B.G. Cheron, A. Addou, J.L. Brisset, Density and rotational temperature measurements of the OH degrees and NO degrees radicals produced by a gliding arc in humid air. Plasma Chem. Plasma Process. 22, 553–571 (2002)

    Article  Google Scholar 

  • M.A. Bogle, K.A. Arndt, J.S. Dover, Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation. Arch. Dermatol. 143, 168–174 (2007)

    Article  Google Scholar 

  • A. Bourdon, T. Darny, F. Pechereau, J.M. Pouvesle, P. Viegas, S. Iseni, E. Robert, Numerical and experimental study of the dynamics of a mu s helium plasma gun discharge with various amounts of N-2 admixture. Plasma Sources Sci. Technol. 25, 035002 (2016)

    Article  ADS  Google Scholar 

  • J.L. Brisset, J. Pawlat, Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water. Plasma Chem. Plasma Process. 36, 355–381 (2016)

    Article  Google Scholar 

  • P. Bruggeman, C. Leys, Non-thermal plasmas in and in contact with liquids. J. Phys. D Appl. Phys. 42, 053001 (2009)

    Article  ADS  Google Scholar 

  • J.G. Carneiro, P.G. Couto, L. Bastos-Rodrigues, M.A. Bicalho, P.V. Vidigal, A. Vilhena, N.F. Amaral, A.E. Bale, E. Friedman, L. De Marco, Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients. Genet. Res. 96, e002 (2014)

    Google Scholar 

  • E. Caron, S. Ghosh, Y. Matsuoka, D. Ashton-Beaucage, M. Therrien, S. Lemieux, C. Perreault, P.P. Roux, H. Kitano, A comprehensive map of the mTOR signaling network. Mol. Syst. Biol. 6, 453 (2010)

    Article  Google Scholar 

  • M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher, Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994)

    Article  ADS  Google Scholar 

  • A.H. Cory, T.C. Owen, J.A. Barltrop, J.G. Cory, Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 3, 207–212 (1991)

    Google Scholar 

  • C.V. Dang, MYC on the path to cancer. Cell 149, 22–35 (2012)

    Article  Google Scholar 

  • F. De Andres-Trelles, Discovery and development of molecularly targeted drugs: regulatory perspectives. J. Chemother. 16(Suppl 4), 19–21 (2004)

    Article  Google Scholar 

  • T. Decker, M.L. Lohmann-Matthes, A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115, 61–69 (1988)

    Article  Google Scholar 

  • A.S. Dhillon, S. Hagan, O. Rath, W. Kolch, MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007)

    Article  Google Scholar 

  • D. Dobrynin, G. Fridman, G. Friedman, A. Fridman, Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 11, 115020 (2009)

    Article  ADS  Google Scholar 

  • A. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, O. Mutaf-Yardimci, Gliding arc gas discharge. Prog. Energy Combust. Sci. 25, 211–231 (1999)

    Article  Google Scholar 

  • G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets, A. Fridman, Applied plasma medicine. Plasma Process. Polym. 5, 503–533 (2008)

    Article  Google Scholar 

  • G. Fridman, M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A. Gutsol, A. Brooks, G. Friedman, Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem. Plasma Process. 26, 425–442 (2006)

    Article  Google Scholar 

  • G. Fridman, A. Shereshevsky, M.M. Jost, A.D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem. Plasma Process. 27, 163–176 (2007)

    Article  Google Scholar 

  • A.F. Frijhoff, C.J. Conti, A.M. Senderowicz, Advances in molecular carcinogenesis: current and future use of mouse models to screen and validate molecularly targeted anticancer drugs. Mol. Carcinog. 39, 183–194 (2004)

    Article  Google Scholar 

  • M.J. Fulwyler, Electronic separation of biological cells by volume. Science 150, 910–911 (1965)

    Article  ADS  Google Scholar 

  • Y. Gavrieli, Y. Sherman, S.A. Ben-Sasson, Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell. Biol. 119, 493–501 (1992)

    Article  Google Scholar 

  • G.G. Ginsberg, A.N. Barkun, J.J. Bosco, J.S. Burdick, G.A. Isenberg, N.L. Nakao, B.T. Petersen, W.B. Silverman, A. Slivka, P.B. Kelsey et al., The argon plasma coagulator. Gastrointest. Endosc. 55, 807–810 (2002)

    Article  Google Scholar 

  • J. Golda, J. Held, B. Redeker, M. Konkowski, P. Beijer, A. Sobota, G. Kroesen, N.S. Braithwaite, S. Reuter, M.M. Turner et al., Concepts and characteristics of the ‘COST Reference Microplasma Jet’. J Phys. D Appl. Phys. 49, 084003 (2016)

    Article  ADS  Google Scholar 

  • M. Goldman, L. Pruitt, Comparison of the effects of gamma radiation and low temperature hydrogen peroxide gas plasma sterilization on the molecular structure, fatigue resistance, and wear behavior of UHMWPE. J. Biomed. Mater. Res. 40, 378–384 (1998)

    Article  Google Scholar 

  • G.S. Graham, T.J. Mielnik, Industrial low-temperature gas plasma sterilization. Med. Device Technol. 8, 28–30 (1997)

    Google Scholar 

  • D.B. Graves, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 45, 263001 (2012)

    Article  ADS  Google Scholar 

  • D.A. Guertin, D.M. Sabatini, Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007)

    Article  Google Scholar 

  • D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  Google Scholar 

  • H. Hara, M. Taniguchi, M. Kobayashi, T. Kamiya, T. Adachi, Plasma-activated medium-induced intracellular zinc liberation causes death of SH-SY5Y cells. Arch. Biochem. Biophys. 584, 51–60 (2015)

    Article  Google Scholar 

  • D.R. Harper, M.L. Kit, H.O. Kangro, Protein blotting: ten years on. J. Virol. Methods 30, 25–39 (1990)

    Article  Google Scholar 

  • N. Hattori, S. Yamada, K. Torii, S. Takeda, K. Nakamura, H. Tanaka, H. Kajiyama, M. Kanda, T. Fujii, G. Nakayama et al., Effectiveness of plasma treatment on pancreatic cancer cells. Int. J. Oncol. 47, 1655–1662 (2015)

    Article  Google Scholar 

  • J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J.L. Zimmermann, T. Shimizu, S. Karrer, Plasma medicine: possible applications in dermatology. J. Dtsch. Dermatol. Ges. 8, 968–976 (2010)

    Google Scholar 

  • L.A. Herzenberg, D. Parks, B. Sahaf, O. Perez, M. Roederer, The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin. Chem. 48, 1819–1827 (2002)

    Google Scholar 

  • R. Higuchi, C. Fockler, G. Dollinger, R. Watson, Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y) 11, 1026–1030 (1993)

    Google Scholar 

  • P.M. Holland, R.D. Abramson, R. Watson, D.H. Gelfand, Detection of specific polymerase chain reaction product by utilizing the 5′—3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA. 88, 7276–7280 (1991)

    Article  ADS  Google Scholar 

  • M. Hori, M. Laroussi, K. Masur, Y. Ikehara, Plasma processes and cancer—special topical cluster of the 2nd IWPCT meeting. Plasma Process. Polym. 12, 1336–1337 (2015)

    Article  Google Scholar 

  • L. Huang, H. Fernandes, H. Zia, P. Tavassoli, H. Rennert, D. Pisapia, M. Imielinski, A. Sboner, M.A. Rubin, M. Kluk et al., The cancer precision medicine knowledge base for structured clinical-grade mutations and interpretations. J. Am. Med. Inform. Assoc. JAMIA 24, 513 (2016)

    Google Scholar 

  • M. Huang, D.S. Hanselman, P. Yang, G.M. Hieftje, Isocontour maps of electron temperature, electron number density and gas kinetic temperature in the Ar inductively coupled plasma obtained by laser-light Thomson and Rayleigh scattering. Spectrochim. Acta B 47, 765–785 (1992)

    Article  ADS  Google Scholar 

  • M. Huang, A. Shen, J. Ding, M. Geng, Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol. Sci. 35, 41–50 (2014)

    Article  Google Scholar 

  • S. Hubner, S. Hofmann, E.M. van Veldhuizen, P.J. Bruggeman, Electron densities and energies of a guided argon streamer in argon and air environments. Plasma Sources Sci. Technol. 22, 065011 (2013)

    Article  ADS  Google Scholar 

  • S. Hubner, J.S. Sousa, V. Puech, G.M.W. Kroesen, N. Sadeghi, Electron properties in an atmospheric helium plasma jet determined by Thomson scattering. J. Phys. D: Appl. Phys. 47, 432001 (2014)

    Article  Google Scholar 

  • S. Hubner, J.S. Sousa, J.J.A.M. van der Mullen, W.G. Graham, Thomson scattering on non-thermal atmospheric pressure plasma jets. Plasma Sources Sci. Tech. 24, 1–15 (2015)

    Google Scholar 

  • S. Ikawa, K. Kitano, S. Hamaguchi, Effects of pH on bacterial inactivation in aqueous solutions due to low-temperature atmospheric pressure plasma application. Plasma Process. Polym. 7, 33–42 (2010)

    Article  Google Scholar 

  • S. Ikehara, H. Sakakita, K. Ishikawa, Y. Akimoto, T. Yamaguchi, M. Yamagishi, J. Kim, M. Ueda, J. Ikeda, H. Nakanishi et al., Plasma blood coagulation without involving the activation of platelets and coagulation factors. Plasma Process. Polym. 12, 1348–1353 (2015)

    Article  Google Scholar 

  • Y. Ikehara, H. Sakakita, N. Shimizu, S. Ikehara, H. Nakanish, Formation of membrane-like structures in clotted blood by mild plasma treatment during hemostasis. J. Photopolym. Sci. Technol. 26, 555–557 (2013)

    Article  Google Scholar 

  • G. Isbary, J. Heinlin, T. Shimizu, J.L. Zimmermann, G. Morfill, H.U. Schmidt, R. Monetti, B. Steffes, W. Bunk, Y. Li et al., Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br. J. Dermatol. 167, 404–410 (2012)

    Article  Google Scholar 

  • G. Isbary, G. Morfill, H.U. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes et al., A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 163, 78–82 (2010)

    Google Scholar 

  • G. Isbary, G. Morfill, J. Zimmermann, T. Shimizu, W. Stolz, Cold atmospheric plasma: a successful treatment of lesions in Hailey–Hailey disease. Arch. Dermatol. 147, 388–390 (2011)

    Article  Google Scholar 

  • S. Iseki, H. Hashizume, F. Jia, K. Takeda, K. Ishikawa, T. Ohta, M. Ito, M. Hori, Inactivation of Penicillium digitatum spores by a high-density ground-state atomic oxygen-radical source employing an atmospheric-pressure plasma. Appl. Phys. Express 4(11), 116201 (2011)

    Article  ADS  Google Scholar 

  • S. Iseki, K. Nakamura, M. Hayashi, H. Tanaka, H. Kondo, H. Kajiyama, H. Kano, F. Kikkawa, M. Hori, Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 100, 113702 (2012)

    Article  ADS  Google Scholar 

  • S. Iseki, T. Ohta, A. Aomatsu, M. Ito, H. Kano, Y. Higashijima, M. Hori, Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 96, 153704 (2010)

    Article  ADS  Google Scholar 

  • K. Itoh, N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J.D. Engel, M. Yamamoto, Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76–86 (1999)

    Article  Google Scholar 

  • M. Iwasaki, H. Inui, Y. Matsudaira, H. Kano, N. Yoshida, M. Ito, M. Hori, Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning. Appl. Phys. Lett. 92, 081503 (2008)

    Article  ADS  Google Scholar 

  • J.K. Jürgen Schlegel, Veronika Boxhammer, Plasma in cancer treatment. Clin. Plasma Med. 1, 2–7 (2013)

    Article  Google Scholar 

  • M.C. Jaramillo, D.D. Zhang, The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27, 2179–2191 (2013)

    Article  Google Scholar 

  • F.D. Jia, N. Sumi, K. Ishikawa, H. Kano, H. Inui, J. Kularatne, K. Takeda, H. Kondo, M. Sekine, A. Kono et al., Laser scattering diagnosis of a 60-Hz non-equilibrium atmospheric pressure plasma jet. Appl. Phys. Express 4, 026101 (2011)

    Article  ADS  Google Scholar 

  • M. Jinno, Y. Ikeda, H. Motomura, Y. Kido, S. Satoh, Investigation of plasma induced electrical and chemical factors and their contribution processes to plasma gene transfection. Arch. Biochem. Biophys. 605, 59–66 (2016)

    Article  Google Scholar 

  • M. Jinno, Y. Ikeda, H. Motomura, Y. Kido, K. Tachibana, S. Satoh, The necessity of radicals for gene transfection by discharge plasma irradiation. J. Photopolym. Sci. Technol. 27, 309–404 (2014)

    Article  Google Scholar 

  • H.M. Joh, S.J. Kim, T.H. Chung, S.H. Leem, Reactive oxygen species-related plasma effects on the apoptosis of human bladder cancer cells in atmospheric pressure pulsed plasma jets. Appl. Phys. Lett. 101, 053703 (2012)

    Article  ADS  Google Scholar 

  • F. Judee, C. Fongia, B. Ducommun, M. Yousfi, V. Lobjois, N. Merbahi, Short and long time effects of low temperature Plasma Activated Media on 3D multicellular tumor spheroids. Sci. Rep-UK 6, 21421 (2016)

    Article  ADS  Google Scholar 

  • H. Kajiyama, K. Nakamura, F. Utsumi, H. Tanaka, M. Hori, F. Kikkawa, Perspective of strategic plasma therapy in patients with epithelial ovarian cancer: a short review of plasma in cancer treatment. Jpn. J. Appl. Phys. 53, 1–4 (2014)

    Article  Google Scholar 

  • H. Kajiyama, F. Utsumi, K. Nakamura, H. Tanaka, M. Mizuno, S. Toyokuni, M. Hori, F. Kikkawa, Possible therapeutic option of aqueous plasma for refractory ovarian cancer. Clin. Plasma Med. 4, 14–18 (2016)

    Article  Google Scholar 

  • S.U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V.N. Vasilets, A.F. Gutsol, A. Fridman, G. Friedman, Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans. Plasma Sci. 35, 1559–1566 (2007)

    Article  ADS  Google Scholar 

  • S. Kanazawa, M. Kogoma, T. Moriwaki, S. Okazaki, Stable glow plasma at atmospheric-pressure. J. Phys. D Appl. Phys. 21, 838–840 (1988)

    Article  ADS  Google Scholar 

  • J. Kapuscinski, DAPI: a DNA-specific fluorescent probe. Biotech. Histochem. 70, 220–233 (1995)

    Article  Google Scholar 

  • M. Keidar, A. Shashurin, O. Volotskova, M.A. Stepp, P. Srinivasan, A. Sandler, B. Trink, Cold atmospheric plasma in cancer therapy. Phys. Plasmas 20, 057101 (2013)

    Article  ADS  Google Scholar 

  • M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R. Ravi, R. Guerrero-Preston, B. Trink, Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br. J. Cancer 105, 1295–1301 (2011)

    Article  Google Scholar 

  • M.M. Kekez, M.R. Barrault, J.D. Craggs, Spectroscopic investigation of the spark channel. J. Phys. D Appl. Phys. 5, 1886 (1970)

    Article  ADS  Google Scholar 

  • I.E. Kieft, J.L.V. Broers, V. Caubet-Hilloutou, D.W. Slaaf, F.C.S. Ramaekers, E. Stoffels, Electric discharge plasmas influence attachment of cultured CHO k1 cells. Bioelectromagnetics 25, 362–368 (2004)

    Article  Google Scholar 

  • I.E. Kieft, M. Kurdi, E. Stoffels, Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Trans. Plasma Sci. 34, 1331–1336 (2006)

    Article  ADS  Google Scholar 

  • K. Kim, J.D. Choi, Y.C. Hong, G. Kim, E.J. Noh, J.S. Lee, S.S. Yang, Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy. Appl. Phys. Lett. 98, 073701 (2011)

    Article  ADS  Google Scholar 

  • H. Kitano, Systems biology: a brief overview. Science 295, 1662–1664 (2002)

    Article  ADS  Google Scholar 

  • M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk, J.L. Zimmermann, Plasma medicine: an introductory review. New J. Phys. 11, 115012 (2009)

    Article  ADS  Google Scholar 

  • A. Kono, K. Iwamoto, High-spatial-resolution multichannel Thomson scattering measurements for atmospheric pressure microdischarge. Japan. J. Appl. Phys. 43, 8A (2004)

    Article  ADS  Google Scholar 

  • Y.D. Korolev, O.B. Frants, N.V. Landl, A.V. Bolotov, V.O. Nekhoroshev, Features of a near-cathode region in a gliding arc discharge in air flow. Plasma Sources Sci. Technol. 23, 054016 (2014)

    Article  ADS  Google Scholar 

  • N. Kumar, J.H. Park, S.N. Jeon, B.S. Park, E.H. Choi, P. Attri, The action of microsecond-pulsed plasma-activated media on the inactivation of human lung cancer cells. J. Phys. D Appl. Phys. 49, 115401 (2016)

    Article  ADS  Google Scholar 

  • L.J. Kuo, L.X. Yang, Gamma-H2AX—a novel biomarker for DNA double-strand breaks. In Vivo 22, 305–309 (2008)

    Google Scholar 

  • N. Kurake, H. Tanaka, K. Ishikawa, K. Takeda, H. Hashizume, K. Nakamura, H. Kajiyama, T. Kondo, F. Kikkawa, M. Mizuno et al., Effects of ·OH and ·NO radicals in the aqueous phase on H2O2 and NO2- generated in plasma-activated medium. J. Phys. D Appl. Phys. 50, 155202 (2017)

    Article  ADS  Google Scholar 

  • N. Kurake, H. Tanaka, K. Ishikawa, T. Kondo, M. Sekine, K. Nakamura, H. Kajiyama, F. Kikkawa, M. Mizuno, M. Hori, Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch. Biochem. Biophys. 605, 102–108 (2016)

    Article  Google Scholar 

  • B.T. Kurien, R.H. Scofield, Western blotting. Methods 38, 283–293 (2006)

    Article  Google Scholar 

  • O. Lademann, H. Richter, A. Patzelt, A. Alborova, D. Humme, K.D. Weltmann, B. Hartmann, P. Hinz, A. Kramer, S. Koch, Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy. Laser Phys. Lett. 7, 458–462 (2010)

    Article  ADS  Google Scholar 

  • D.P. Lane, Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992)

    Article  ADS  Google Scholar 

  • M. Laroussi, Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans. Plasma Sci. 30, 1409–1415 (1992)

    Article  ADS  Google Scholar 

  • M. Laroussi, Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 24, 1188–1191 (1996)

    Article  ADS  Google Scholar 

  • M. Laroussi, M. Keidar, Plasma processes and polymers special issue on: plasma and cancer. Plasma Process. Polym. 11, 1118–1119 (2014)

    Article  Google Scholar 

  • M. Laroussi, J.P. Richardson, F.C. Dobbs, Effects of nonequilibrium atmospheric pressure plasmas on the heterotrophic pathways of bacteria and on their cell morphology. Appl. Phys. Lett. 81, 772–774 (2002)

    Article  ADS  Google Scholar 

  • A.J. Levine, M. Oren, The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9, 749–758 (2009)

    Article  Google Scholar 

  • A. Lin, B. Truong, A. Pappas, L. Kirifides, A. Oubarri, S.Y. Chen, S.J. Lin, D. Dobrynin, G. Fridman, A. Fridman et al., Uniform nanosecond pulsed dielectric barrier discharge plasma enhances anti-tumor effects by induction of immunogenic cell death in tumors and stimulation of macrophages. Plasma Process. Polym. 12, 1392–1399 (2015)

    Article  Google Scholar 

  • L.A. Loeb, K.R. Loeb, J.P. Anderson, Multiple mutations and cancer. Proc. Natl. Acad. Sci. USA. 100, 776–781 (2003)

    Article  ADS  Google Scholar 

  • R. Matsumoto, K. Shimizu, T. Nagashima, H. Tanaka, M. Mizuno, F. Kikkawa, M. Hori, H. Honda, Plasma-activated medium selectively eliminates undifferentiated human induced pluripotent stem cells. Regener. Ther. 5, 55–63 (2016)

    Article  Google Scholar 

  • H.-R. Metelmann, David S. Nedrelow, C. Seebauer, M. Schuster, T. von Woedtke, K.-D. Weltmann, S. Kindler, P.H. Metelmann, S.E. Finkelstein, D.D. Von Hoff et al., Head and neck cancer treatment and physical plasma. Clin. Plasma Med. 3, 17–23 (2015)

    Article  Google Scholar 

  • N. Meyer, L.Z. Penn, Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008)

    Article  Google Scholar 

  • J.M. Miller, D.V. Palanker, A. Vankov, M.F. Marmor, M.S. Blumenkranz, Precision and safety of the pulsed electron avalanche knife in vitreoretinal surgery. Arch. Ophthalmol. Chic 121, 871–877 (2003)

    Article  Google Scholar 

  • V. Miller, A. Lin, A. Fridman, Why target immune cells for plasma treatment of cancer. Plasma Chem. Plasma Process. 36, 259–268 (2016)

    Article  Google Scholar 

  • V. Miller, A. Lin, G. Fridman, D. Dobrynin, A. Fridman, Plasma stimulation of migration of macrophages. Plasma Process. Polym. 11, 1193–1197 (2014)

    Article  Google Scholar 

  • K. Miyamoto, S. Ikehara, H. Sakakita, Y. Ikehara, Low temperature plasma equipment applied on surgical hemostasis and wound healings. J. Clin. Biochem. Nutr. 60, 25–28 (2017)

    Article  Google Scholar 

  • K. Miyamoto, S. Ikehara, H. Takei, Y. Akimoto, H. Sakakita, K. Ishikawa, M. Ueda, J.I. Ikeda, M. Yamagishi, J. Kim et al., Red blood cell coagulation induced by low-temperature plasma treatment. Arch. Biochem. Biophys. 605, 95–101 (2016)

    Article  Google Scholar 

  • A. Mizuno, Y. Hori, Destruction of living cells by pulsed high-voltage application. IEEE Trans. Ind. Appl. 24, 387–394 (1988)

    Article  Google Scholar 

  • S. Mohades, M. Laroussi, J. Sears, N. Barekzi, H. Razavi, Evaluation of the effects of a plasma activated medium on cancer cells. Phys. Plasmas 22, 122001 (2015)

    Article  ADS  Google Scholar 

  • G.E. Morfill, M.G. Kong, J.L. Zimmermann, Focus on plasma medicine. New J. Phys. 11, 115011 (2009)

    Article  ADS  Google Scholar 

  • K.B. Mullis, F.A. Faloona, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155, 335–350 (1987)

    Article  Google Scholar 

  • N. Murray, The challenge of using biomarkers and molecularly targeted drugs to improve cure rate in early stage non-small cell lung cancer. J. Thorac. Dis. 7, 230–234 (2015)

    Google Scholar 

  • N. Nandagopal, M.B. Elowitz, Synthetic biology: integrated gene circuits. Science 333, 1244–1248 (2011)

    Article  ADS  Google Scholar 

  • E. Nedanovska, G. Nersisyan, T.J. Morgan, L. Hüwel, C.L.S. Lewis, D. Riley, W.G. Graham, Comparison of the electron density measurements using Thomson scattering and emission spectroscopy for laser induced breakdown in one atmosphere of helium. Appl. Phys. Lett. 99, 261504 (2011)

    Article  ADS  Google Scholar 

  • S. Okazaki, M. Kogoma, M. Uehara, Y. Kimura, Appearance of stable glow-discharge in air, argon, oxygen and nitrogen at atmospheric-pressure using a 50-Hz source. J. Phys. D Appl. Phys. 26, 889–892 (1993)

    Article  ADS  Google Scholar 

  • Y. Okazaki, Y. Wang, H. Tanaka, M. Mizuno, K. Nakamura, H. Kajiyama, H. Kano, K. Uchida, F. Kikkawa, M. Hori et al., Direct exposure of non-equilibrium atmospheric pressure plasma confers simultaneous oxidative and ultraviolet modifications in biomolecules. J. Clin. Biochem. Nutr. 55, 207–215 (2014)

    Article  Google Scholar 

  • A. Pagano, F. Auxilia, S. Passarella, M.P. Casati, R. Pozzato, Low-temperature sterilization: evaluation of a method based on hydrogen peroxide gas plasma. Annali di igiene: medicina preventiva e di comunita 9, 153–164 (1997)

    Google Scholar 

  • J. Park, I. Henins, H.W. Herrmann, G.S. Selwyn, R.F. Hicks, Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source. J. Appl. Phys. 89, 20–28 (2001)

    Article  ADS  Google Scholar 

  • A.V. Pipa, Y.Z. Ionikh, V.M. Chekishev, M. Dunnbier, S. Reuter, Resonance broadening of argon lines in a micro-scaled atmospheric pressure plasma jet (argon mu APPJ). Appl. Phys. Lett. 106, 244104 (2015)

    Article  ADS  Google Scholar 

  • S.G. Priglinger, C. Haritoglou, D. Palanker, D. Kook, M. Grueterich, A. Mueller, C.S. Alge, A. Kampik, Pulsed electron avalanche knife for capsulotomy in congenital and mature cataract. J. Cataract Refr. Surg. 32, 1085–1088 (2006)

    Article  Google Scholar 

  • B.J. Raphael, J.R. Dobson, L. Oesper, F. Vandin, Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 6, 5 (2014)

    Article  Google Scholar 

  • S. Reuter, H. Tresp, K. Wende, M.U. Hammer, J. Winter, K. Masur, A. Schmidt-Bleker, K.D. Weltmann, From RONS to ROS: tailoring plasma jet treatment of skin cells. IEEE Trans. Plasma Sci. 40, 2986–2993 (2012)

    Article  ADS  Google Scholar 

  • A. Roettgen, I. Shkurenkov, M.S. Simeni, V. Petrishchev, I.V. Adamovich, W.R. Lempert, Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium. Plasma Sources Sci. Technol. 25, 055009 (2016)

    Article  ADS  Google Scholar 

  • W.A. Rutala, M.F. Gergen, D.J. Weber, Comparative evaluation of the sporicidal activity of new low-temperature sterilization technologies: ethylene oxide, 2 plasma sterilization systems, and liquid peracetic acid. Am. J. Infect. Control 26, 393–398 (1998)

    Article  Google Scholar 

  • H. Sakakita, S. Ikehara, Irradiation experiments on a mouse using a mild-plasma generator for medical applications. Plasma Fusion Res. 5, S2117–S2117 (2010)

    Article  ADS  Google Scholar 

  • S. Sasaki, M. Kanzaki, T. Kaneko, Highly efficient and minimally invasive transfection using time-controlled irradiation of atmospheric-pressure plasma. Appl. Phys. Express 7, 026202 (2014)

    Article  ADS  Google Scholar 

  • M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  ADS  Google Scholar 

  • A. Schmidt-Bleker, J. Winter, A. Bosel, S. Reuter, K.D. Weltmann, On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device. Plasma Sources Sci. Technol. 25, 015005 (2016)

    Article  ADS  Google Scholar 

  • A. Schmidt, K. Wende, S. Bekeschus, L. Bundscherer, A. Barton, K. Ottmuller, K.D. Weltmann, K. Masur, Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radic. Res. 47, 577–592 (2013)

    Article  Google Scholar 

  • C.G. Schregel, E.A.D. Carbone, D. Luggenholscher, U. Czarnetzki, Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: I. Electron, Rydberg molecules and He (2(3)S) densities. Plasma Sources Sci. Technol. 25, 054004 (2016)

    Article  ADS  Google Scholar 

  • A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans. Plasma Sci. 26, 1685–1694 (1998)

    Article  ADS  Google Scholar 

  • E. Seidler, The tetrazolium-formazan system: design and histochemistry. Prog. Histochem. Cytochem. 24, 1–86 (1991)

    Article  Google Scholar 

  • R. Sensenig, S. Kalghatgi, E. Cerchar, G. Fridman, A. Shereshevsky, B. Torabi, K.P. Arjunan, E. Podolsky, A. Fridman, G. Friedman et al., Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species (retracted article. see vol. 41, pg. 656, 2013). Ann. Biomed. Eng. 39, 674–687 (2011)

    Article  Google Scholar 

  • K. Setsukinai, Y. Urano, K. Kakinuma, H.J. Majima, T. Nagano, Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170–3175 (2003)

    Article  Google Scholar 

  • L. Shi, Y. Wang, F. Ito, Y. Okazaki, H. Tanaka, M. Mizuno, M. Hori, D.R. Richardson, S. Toyokuni, Biphasic effects of l-ascorbate on the tumoricidal activity of non-thermal plasma against malignant mesothelioma cells. Arch. Biochem. Biophys. 605, 109–116 (2016)

    Article  Google Scholar 

  • O. Shimomura, F.H. Johnson, Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol. 59, 223–239 (1962)

    Article  Google Scholar 

  • C. Siemens, On the electrical tests employed during the construction of the malta and alexandria telegraph, and on insulating and protecting submarine cables. J. Frankl. Inst. 74, 166–170 (1862)

    Article  Google Scholar 

  • M.S. Simeni, A. Roettgen, V. Petrishchev, K. Frederickson, I.V. Adamovich, Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface. Plasma Sources Sci. Technol. 25, 064005 (2016)

    Article  ADS  Google Scholar 

  • C. Spry, Low-temperature hydrogen peroxide gas plasma–atomic age sterilization technology. Today’s Surg. Nurse 20, 25–28 (1998)

    Google Scholar 

  • E. Stoffels, A.J. Flikweert, W.W. Stoffels, G.M.W. Kroesen, Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sources Sci. Technol. 11, 383–388 (2002)

    Article  ADS  Google Scholar 

  • W. Strober, Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 3, Appendix 3B (2001)

    Google Scholar 

  • J. Su, M. Cai, W. Li, B. Hou, H. He, C. Ling, T. Huang, H. Liu, Y. Guo, Molecularly targeted drugs plus radiotherapy and temozolomide treatment for newly diagnosed glioblastoma: a meta-analysis and systematic review. Oncol. Res. 24, 117–128 (2016)

    Article  Google Scholar 

  • Z. Su, D. Dias-Santagata, M. Duke, K. Hutchinson, Y.L. Lin, D.R. Borger, C.H. Chung, P.P. Massion, C.L. Vnencak-Jones, A.J. Iafrate et al., A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer. J. Mol. Diagn. JMD 13, 74–84 (2011)

    Article  Google Scholar 

  • Y. Tabuchi, H. Uchiyama, Q.L. Zhao, T. Yunoki, G. Andocs, N. Nojima, K. Takeda, K. Ishikawa, M. Hori, T. Kondo, Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma. Int. J. Mol. Med. 37, 1706–1714 (2016)

    Article  Google Scholar 

  • M. Tajadini, M. Panjehpour, S.H. Javanmard, Comparison of SYBR Green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Adv. Biomed. Res. 3, 85 (2014)

    Article  Google Scholar 

  • Takeda Keigo, Ishikawa Kenji, Tanaka Hiromasa, Sekine Makoto, H. Masaru, Spatial distributions of O, N, NO, OH and vacuum ultraviolet light along gas flow direction in an AC-excited atmospheric pressure Ar plasma jet generated in open air. J. Phys. D Appl. Phys. 50, 195202 (2017)

    Article  Google Scholar 

  • S. Takeda, S. Yamada, N. Hattori, K. Nakamura, H. Tanaka, H. Kajiyama, M. Kanda, D. Kobayashi, C. Tanaka, T. Fujii et al., Intraperitoneal administration of plasma-activated medium: proposal of a novel treatment option for peritoneal metastasis from gastric cancer. Ann. Surg. Oncol. 24, 1188–1194 (2017)

    Article  Google Scholar 

  • H. Tanaka, M. Mizuno, K. Ishikawa, H. Kondo, K. Takeda, H. Hashizume, K. Nakamura, F. Utsumi, H. Kajiyama, H. Kano et al., Plasma with high electron density and plasma-activated medium for cancer treatment. Clin. Plasma Med. 3, 72–76 (2015a)

    Article  Google Scholar 

  • H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa, M. Hori, Plasma-activated medium selectively kills glioblastoma brain tumor cells by down-regulating a survival signaling molecule, AKT kinase. Plasma Med. 1, 265–277 (2013)

    Article  Google Scholar 

  • H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, F. Utsumi, H. Kajiyama, H. Kano, S. Maruyama, F. Kikkawa, M. Hori, Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med. 2, 207–220 (2014a)

    Article  Google Scholar 

  • H. Tanaka, M. Mizuno, K. Ishikawa, K. Takeda, K. Nakamura, F. Utsumi, H. Kajiyama, H. Kano, Y. Okazaki, S. Toyokuni et al., Plasma medical science for cancer therapy: toward cancer therapy using nonthermal atmospheric pressure plasma. IEEE Trans. Plasma Sci. 42, 3760–3764 (2014b)

    Article  ADS  Google Scholar 

  • H. Tanaka, M. Mizuno, F. Kikkawa, M. Hori, Interactions between a plasma-activated medium and cancer cells. Plasma Med. 6, 101–106 (2016a)

    Article  Google Scholar 

  • H. Tanaka, M. Mizuno, S. Toyokuni, S. Maruyama, Y. Kodera, H. Terasaki, T. Adachi, M. Kato, F. Kikkawa, M. Hori, Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density. Phys. Plasmas 22, 122003 (2015b)

    Article  ADS  Google Scholar 

  • H. Tanaka, K. Nakamura, M. Mizuno, K. Ishikawa, K. Takeda, H. Kajiyama, F. Utsumi, F. Kikkawa, M. Hori, Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Sci. Rep. 6, 36282 (2016b)

    Article  ADS  Google Scholar 

  • H. Tanaka, E. Takasu, T. Aigaki, K. Kato, S. Hayashi, A. Nose, Formin3 is required for assembly of the F-actin structure that mediates tracheal fusion in Drosophila. Dev. Biol. 274, 413–425 (2004)

    Article  Google Scholar 

  • H. Tanaka, M. Mizuno, K. Ishikawa, K. Takeda, H. Hashizume, K. Nakamura, F. Utsumi, H. Kajiyama, H. Kano, Y. Okazaki, S. Toyokuni, S. Maruyama, T. Adachi, H. Kaneko, H. Terasaki, F. Kikkawa, M. Hori, Dynamic behaviour of glioblastoma cells in plasma-activated medium. in Proceedings of the 22nd International Symposium on Plasma Chemistry O7-1 (2015)

  • K. Torii, S. Yamada, K. Nakamura, H. Tanaka, H. Kajiyama, K. Tanahashi, N. Iwata, M. Kanda, D. Kobayashi, C. Tanaka et al., Effectiveness of plasma treatment on gastric cancer cells. Gastric Cancer 18, 635–643 (2014)

    Article  Google Scholar 

  • H. Towbin, T. Staehelin, J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets—procedure and some applications. Proc. Natl. Acad. Sci. USA. 76, 4350–4354 (1979)

    Article  ADS  Google Scholar 

  • S. Toyokuni, The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int. 66, 245–259 (2016)

    Article  Google Scholar 

  • S. Trispel, Costs of low temperature plasma sterilization. J. Hosp. Infect. 42, 247–248 (1999)

    Article  Google Scholar 

  • M. Ueda, D. Yamagami, K. Watanabe, A. Mori, H. Kimura, K. Sano, H. Saji, K. Ishikawa, M. Hori, H. Sakakita et al., Histological and nuclear medical comparison of inflammation after hemostasis with non-thermal plasma and thermal coagulation. Plasma Process. Polym. 12, 1338–1342 (2015)

    Article  Google Scholar 

  • F. Utsumi, H. Kajiyama, K. Nakamura, H. Tanaka, M. Hori, F. Kikkawa, Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma. SpringerPlus 3, 398 (2014)

    Article  Google Scholar 

  • F. Utsumi, H. Kajiyama, K. Nakamura, H. Tanaka, M. Mizuno, K. Ishikawa, H. Kondo, H. Kano, M. Hori, F. Kikkawa, Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One 8, e81576 (2013)

    Article  ADS  Google Scholar 

  • F. Utsumi, H. Kajiyama, K. Nakamura, H. Tanaka, M. Mizuno, S. Toyokuni, M. Hori, F. Kikkawa, Variable susceptibility of ovarian cancer cells to non-thermal plasma-activated medium. Oncol. Rep. 35, 3169–3177 (2016)

    Article  Google Scholar 

  • J.J.A.M. van der Mullen, M.J. van de Sande, N. de Vries, B. Broks, E. Iordanova, A. Gamero, J. Torres, A. Sola, Single-shot Thomson scattering on argon plasmas created by the Microwave Plasma Torch; evidence for a new plasma class. Spectrochim. Acta B 62, 1135–1146 (2007)

    Article  ADS  Google Scholar 

  • A.F.H. van Gessel, E.A.D. Carbone, P.J. Bruggeman, J.J.A.M. van der Mullen, Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering. Plasma Sources Sci. Technol. 21, 015003 (2012)

    Article  ADS  Google Scholar 

  • B. van Gessel, R. Brandenburg, P. Bruggeman, Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure. Appl. Phys. Lett. 103, 064103 (2013)

    Article  ADS  Google Scholar 

  • M. Vandamme, E. Robert, S. Pesnel, E. Barbosa, S. Dozias, J. Sobilo, S. Lerondel, A. Le Pape, J.M. Pouvesle, Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process. Polym. 7, 264–273 (2010)

    Article  Google Scholar 

  • D.T. Vistica, P. Skehan, D. Scudiero, A. Monks, A. Pittman, M.R. Boyd, Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Can. Res. 51, 2515–2520 (1991)

    Google Scholar 

  • T. von Woedtke, S. Reuter, K. Masur, K.D. Weltmann, Plasmas for medicine. Phys. Rep. 530, 291–320 (2013)

    Article  ADS  Google Scholar 

  • K.D. Weltmann, E. Kindel, R. Brandenburg, C. Meyer, R. Bussiahn, C. Wilke, T. von Woedtke, Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contrib. Plasma Phys. 49, 631–640 (2009)

    Article  ADS  Google Scholar 

  • K.D. Weltmann, E. Kindel, T. von Woedtke, M. Hahnel, M. Stieber, R. Brandenburg, Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl. Chem. 82, 1223–1237 (2010)

    Article  Google Scholar 

  • K.D. Weltmann, T. von Woedtke, Plasma medicine-current state of research and medical application. Plasma Phys. Control. Fusion 59, 014031 (2017)

    Article  ADS  Google Scholar 

  • M.L. Wong, J.F. Medrano, Real-time PCR for mRNA quantitation. Biotechniques 39, 75–85 (2005)

    Article  Google Scholar 

  • Y.I. Wu, D. Frey, O.I. Lungu, A. Jaehrig, I. Schlichting, B. Kuhlman, K.M. Hahn, A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009)

    Article  ADS  Google Scholar 

  • A.J. Wu, X.D. Li, L. Chen, C.M. Du, J.H. Yan, Investigation of the physical properties in rotating gliding arc discharge with rapeseed oil. IEEE Trans. Plasma Sci. 43, 3219–3223 (2015)

    Article  ADS  Google Scholar 

  • E. Wulf, A. Deboben, F.A. Bautz, H. Faulstich, T. Wieland, Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA. 76, 4498–4502 (1979)

    Article  ADS  Google Scholar 

  • D. Yan, A. Talbot, N. Nourmohammadi, X. Cheng, J. Canady, J. Sherman, M. Keidar, Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci. Rep. UK 5, 18339 (2015)

    Article  ADS  Google Scholar 

  • D.Y. Yan, N. Nourmohammadi, K. Bian, F. Murad, J.H. Sherman, M. Keidar, Stabilizing the cold plasma-stimulated medium by regulating medium’s composition. Sci. Rep. UK 6, 26016 (2016)

    Article  ADS  Google Scholar 

  • D.Y. Yan, J.H. Sherman, X.Q. Cheng, E. Ratovitski, J. Canady, M. Keidar, Controlling plasma stimulated media in cancer treatment application. Appl. Phys. Lett. 105, 224101 (2014)

    Article  ADS  Google Scholar 

  • F. Ye, H. Kaneko, Y. Nagasaka, R. Ijima, K. Nakamura, M. Nagaya, K. Takayama, H. Kajiyama, T. Senga, H. Tanaka et al., Plasma-activated medium suppresses choroidal neovascularization in mice: a new therapeutic concept for age-related macular degeneration. Sci. Rep. 5, 7705 (2015)

    Article  Google Scholar 

  • M. Yokoyama, K. Johkura, T. Sato, Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow. Biochem. Biophys. Res. Commun. 450, 1266–1271 (2014)

    Article  Google Scholar 

  • T.L. Yuan, L.C. Cantley, PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497–5510 (2008)

    Article  Google Scholar 

  • W. Zhang, E.K. Flemington, K. Zhang, Mutant TP53 disrupts age-related accumulation patterns of somatic mutations in multiple cancer types. Cancer Genet. 209, 376–380 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research on Innovative Areas “Plasma Medical Innovation” (Grant Nos. 24108002 and 24108008), a Grant-in-Aid for Young Scientists (A) (Grant No. 15H05430), and a Grant-in-Aid for Challenging Exploratory Research Grant (No. 15K13390) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromasa Tanaka.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H., Ishikawa, K., Mizuno, M. et al. State of the art in medical applications using non-thermal atmospheric pressure plasma. Rev. Mod. Plasma Phys. 1, 3 (2017). https://doi.org/10.1007/s41614-017-0004-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-017-0004-3

Keywords

Navigation