Skip to main content
Log in

The growth progress of Nb films on Cu: a molecular dynamics simulation

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Background

Superconductive Nb films deposited on copper cavities has been widely studied, but simulation studies on the growth of Nb films have rarely been reported in the literature.

Methods

In this study, effects of Nb atom incidence energy, incidence angle and deposition temperature on Nb film growth were investigated by molecular dynamics simulations.

Results

It was found that for the growth of Nb films, a moderate increased the incidence energy of Nb atoms can attenuate the shadow effect, and both too high and too low incident energy are not conducive to the production of high quality Nb films, and the substrate temperature mainly affects the quality of the crystal structure of Nb films.

Conclusion

In a word, Nb atoms with higher incidence energy (i.e. 10 eV) deposited vertically on Cu substrates at 473.15 K are more favorable for the growth of Nb films with lower surface roughness, higher crystallinity and fewer defects, providing an important reference for the preparation of high quality superconductive Nb films on SRF cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Benvenuti, S. Calatroni, I.E. Campisi et al., Study of the surface resistance of superconducting niobium films at 1.5 GHz [J]. Physica C-Supercond. Appl. 316(3–4), 153–188 (1999). https://doi.org/10.1016/S0921-4534(99)00207-5

    Article  ADS  Google Scholar 

  2. A.M. Valente-Feliciano, Superconducting RF materials other than bulk niobium: a review [J]. Supercond. Sci. Technol. 29(11), 113002 (2016). https://doi.org/10.1088/0953-2048/29/11/113002

    Article  ADS  Google Scholar 

  3. V. Palmieri, G. Caldarola, S. Cisternino, et al. The Way of Thick Films toward a Flat Q-curve in Sputtered Cavities; proceedings of the Proceedings of 18th International Conference on RF Superconductivity (SRF 2017), F, (2017) [C]

  4. C. Benvenuti, N. Circelli, M. Hauer et al., Superconducting 500 MHz accelerating copper cavities sputter-coated with niobium films [J]. IEEE Trans. Magn. 21(2), 153–156 (1985)

    Article  ADS  Google Scholar 

  5. S. Calatroni, 20 Years of experience with the Nb/Cu technology for superconducting cavities and perspectives for future developments [J]. Physica C 441(1–2), 95–101 (2006). https://doi.org/10.1016/j.physc.2006.03.044

    Article  ADS  Google Scholar 

  6. G. Orlandi. Niobium coatings for 1.5 GHz rf cavities [J]. (1993)

  7. A. Porcellato, S. Stark, V. Palmieri, et al. Completion of ALPI medium beta section upgrading; proceedings of the Proceeding of 11th RF Superconductivity Workshop, Travelmunde, Germany, F, (2003)

  8. A. Valente-Feliciano. A New generation of films deposition techniques for SRF applications [J]. Proceedings of SRF2013 Paris, France:[sn], (2013)

  9. A.-M. Valente-Feliciano, S. Aull, J. Spradlin, et al. Material quality & SRF performance of Nb films grown on Cu via ECR plasma energetic condensation [J]. (2015)

  10. M. C. Burton, A. D. Palczewski, H. L. Phillips, et al. RF results of Nb coated srf accelerator cavities via HiPIMS [R]: Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA …, (2019)

  11. M. Arzeo, F. Avino, S. Pfeiffer et al., Enhanced radio-frequency performance of niobium films on copper substrates deposited by high power impulse magnetron sputtering [J]. Supercond. Sci. Technol. 35(5), 054008 (2022). https://doi.org/10.1088/1361-6668/ac5646

    Article  ADS  Google Scholar 

  12. C.J. Chu, T.C. Chen, Surface properties of film deposition using molecular dynamics simulation [J]. Surf. Coat. Technol. 201(3–4), 1796–1804 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.014

    Article  Google Scholar 

  13. G. Zhu, J.P. Sun, L.B. Zhang et al., Molecular dynamics simulation of temperature effects on deposition of Cu film on Si by magnetron sputtering [J]. J. Cryst. Growth 492, 60–66 (2018). https://doi.org/10.1016/j.jcrysgro.2018.04.002

    Article  ADS  Google Scholar 

  14. L.B. Zhang, H. Yan, K. Sun et al., Molecular dynamics simulations of AlN deposition on GaN substrate [J]. Mol. Phys. 117(13), 1758–1767 (2019). https://doi.org/10.1080/00268976.2019.1587025

    Article  ADS  Google Scholar 

  15. H. Mes-adi, K. Saadouni, M. Badawi et al., Growth and annealing effect on the Cu thin film deposited on Si (001) surface [J]. J. Cryst. Growth (2022). https://doi.org/10.1016/j.jcrysgro.2022.126631

    Article  Google Scholar 

  16. A. Hassani, A. Makan, K. Sbiaai et al., Incidence energy effect and impact assessment during homoepitaxial growth of nickel on (001), (111) and (110) surfaces [J]. Thin Solid Films 640, 123–133 (2017). https://doi.org/10.1016/j.tsf.2017.09.006

    Article  ADS  Google Scholar 

  17. X.G. Zhu, Y.P. Lu, Growth of beryllium thin films on beryllium (0001) surface: Influence of incident energy and incident angle by molecular dynamics simulation [J]. J. Appl. Phys. (2018). https://doi.org/10.1063/1.5051716

    Article  Google Scholar 

  18. M.R. Fellinger, H. Park, J.W. Wilkins, Force-matched embedded-atom method potential for niobium [J]. PhRvB 81(14), 144119 (2010). https://doi.org/10.1103/PhysRevB.81.144119

    Article  ADS  Google Scholar 

  19. M.I. Mendelev, M.J. Kramer, C.A. Becker et al., Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu [J]. Phil. Mag. 88(12), 1723–1750 (2008). https://doi.org/10.1080/14786430802206482

    Article  ADS  Google Scholar 

  20. Interatomic Potentials Database (University of Science & Technology Beijing, China) , http://apot.mgedata.cn/InteratomicPotentials/index. Accessed 23 Aug 2022

  21. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  MATH  Google Scholar 

  22. A. Stukowski, Computational analysis methods in atomistic modeling of crystals [J]. JOM 66(3), 399–407 (2014). https://doi.org/10.1007/s11837-013-0827-5

    Article  Google Scholar 

  23. A. Stukowski, V.V. Bulatov, A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces [J]. Model. Simulat. Mater. Sci. Eng. (2012). https://doi.org/10.1088/0965-0393/20/8/085007

    Article  Google Scholar 

  24. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool [J]. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  ADS  Google Scholar 

  25. K. Saito, A. Lab. Surface smoothness for high gradient Niobium sc rf cavities [J]. (2003)

  26. D. Reschke, S. Basics. Limits in cavity performance; proceedings of the Tutorial, 13th Workshop on RF Supercond, Beijing, China, F, (2007) [C]

  27. J. Lee, Z. Sung, A. Murthy et al., Stress-induced structural changes in Nb thin film [R] (Jefferson Lab, USA, 2022)

    Google Scholar 

  28. Y.Z. Cao, J.J. Zhang, C. Wu et al., Effect of incident angle on thin film growth: a molecular dynamics simulation study [J]. Thin Solid Films 544, 496–499 (2013). https://doi.org/10.1016/j.tsf.2013.01.067

    Article  ADS  Google Scholar 

  29. F. Avino, D. Fonnesu, T. Koettig et al., Improved film density for coatings at grazing angle of incidence in high power impulse magnetron sputtering with positive pulse [J]. Thin Solid Films 706, 138058 (2020). https://doi.org/10.1016/j.tsf.2020.138058

    Article  ADS  Google Scholar 

  30. A. Hecimovic, A.P. Ehiasarian, Temporal evolution of the ion fluxes for various elements in HIPIMS plasma discharge [J]. IEEE Trans. Plasma Sci. 39(4), 1154–1164 (2011). https://doi.org/10.1109/Tps.2011.2106516

    Article  ADS  Google Scholar 

  31. P. Darriulat, C. Durand, N. M. Rensing, et al. Dependence of the surface resistance of niobium coated copper cavities on the coating temperature, F, (1995) [C]

Download references

Funding

This work was supported by the Xie Jialin research fund (No. E2546HU210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichang Duan.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Yang, Y., Ma, Y. et al. The growth progress of Nb films on Cu: a molecular dynamics simulation. Radiat Detect Technol Methods 7, 561–570 (2023). https://doi.org/10.1007/s41605-023-00425-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-023-00425-w

Keywords

Navigation