Skip to main content
Log in

Design of proton beam collimation system for HIAF-BRing

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Background

The Booster Ring is further designed to store and accelerate protons up to 2 × 1012 particles per pulse in the High-Intensity heavy-ion Accelerator Facility project, which was originally designed to accelerate high-intensity heavy ion beams.

Purpose and Methods

To minimize the uncontrolled proton beam halo loss around the ring in operation, a two-stage collimation system is proposed to provide a well-shielded dump for localizing the proton beam halo loss.

Results and conclusion

In this paper, the simulation is carried out to evaluate the collimation system which shows a 92.93% collimation efficiency. Finally, several factors that affect the collimation efficiency are taken into consideration, including the physical aperture, the offset and rotation errors of the collimators, the closed orbit distortion, as well as the Betatron tunes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.C. Yang, J.W. Xia, G.Q. Xiao et al., High intensity heavy ion accelerator facility (HIAF) in China. Nucl. Instrum. Methods Phys. Res. 317, 263 (2013). https://doi.org/10.1016/j.nimb.2013.08.046

    Article  ADS  Google Scholar 

  2. H.W. Zhao, L.T. Sun, J.W. Guo et al., Superconducting ECR ion source: from 24–28 GHz SECRAL to 45 GHz fourth generation ECR. Rev. Sci. Instrum. 89, 052301 (2018). https://doi.org/10.1063/1.5017479

    Article  ADS  Google Scholar 

  3. Z.J. Wang, Y. He, H. Jia, et al., Conceptual design of superconducting heavy ion linear injector for HIAF, in Proceedings of LINAC2012 (2012) 561–563. https://accelconf.web.cern.ch/LINAC2012/papers/tupb039.pdf

  4. L.N. Sheng, X.H. Zhang, J.Q. Zhang et al., Ion-optical design of High energy FRagment Separator (HFRS) at HIAF. Nucl. Instrum. Methods Phys. Res. Sect. B 469, 1–9 (2020). https://doi.org/10.1016/j.nimb.2020.02.026

    Article  ADS  Google Scholar 

  5. B. Wu, J.C. Yang, J.W. Xia et al., The design of the Spectrometer Ring at the HIAF. Nucl. Inst. Methods Phys. Res. A 881, 27–35 (2018). https://doi.org/10.1016/j.nima.2017.08.017

    Article  ADS  Google Scholar 

  6. P. Li, Y.J. Yuan, J.C. Yang et al., The collimation system design for the Booster Ring in the HIAF project. Nucl. Instrum. Methods Phys. Res. Sect. A 920, 14–21 (2019). https://doi.org/10.1016/j.nima.2018.12.064

    Article  ADS  Google Scholar 

  7. J.A. Hoslmes, V.V. Danilov, J.D. Galambos et al., Space charge dynamics in high intensity rings. Phys. Rev. Spec. Top. Accel. Beams 2(11), 114202 (1999). https://doi.org/10.1103/PhysRevSTAB.2.114202

    Article  ADS  Google Scholar 

  8. A.V. Fedotov, Mechanisms of halo formation, in HALO’03 Workshop (Montauk, New York, 2003). https://doi.org/10.1063/1.1638311

  9. A.V. Fedotov, Beam halo formation in high-intensity beams. Nucl. Instrum. Methods Phys. Res. 557, 216 (2006). https://doi.org/10.1016/j.nima.2005.10.073

    Article  ADS  Google Scholar 

  10. A.V. Fedotov, Reasonance and beam loss in high-intensity rings, in PAC2003, pp. 383–387 (2003). https://accelconf.web.cern.ch/p03/PAPERS/WOAB002.PDF

  11. N. Mokhov, W. Chou, et al. Beam Halo and Scraping, the report of the 7th ICFA Mini-workshop on High Intensity Brightness Hadron Beams, Lake Como, Wisconsin (1999). https://cds.cern.ch/record/476790

  12. J.B. Jeanneret, T. Trenkler, The principles of two stage betatron and momentum collimation in circular accelerators. Part. Accel. 50, 287–311 (1995)

    Google Scholar 

  13. J.B. Jeanneret, Optics of a two-stage collimation system. Phys. Rev. ST Accel. Beams 1, 081001 (1998). https://doi.org/10.1103/PhysRevSTAB.1.081001

    Article  ADS  Google Scholar 

  14. P.J. Bryant, E. Klein, The Design of betatron and momentum collimation systems, in CERN Accelerator School: 5th General Accelerator Physics Course, CERN 92-40, pp. 1–17 (1992). https://cds.cern.ch/record/241140/files/CM-P00062698.pdf

  15. M. Seidel, The proton collimation system of HERA, DESY Report 1994, NO. 94–103. https://cds.cern.ch/record/265772

  16. J. Barranco, Y. Papaphilippou, Parametric study of a two-stage beratron collimation for the PS2, in Proceedings of HB 2010, Morschach, Switzerland. https://epaper.kek.jp/HB2010/papers/tho2b02.pdf

  17. H.A. Bethe, Molière’s theory of multiply scattering. Phys. Rev. 89, 1256 (1953). https://doi.org/10.1103/PhysRev.89.1256

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. K. Yamamoto, Efficiency simulation for the beam collimation system of the Japan Accelerator Research Complex rapid-cycling synchrotron. Phys. Rev. ST Accel. Beams 11, 123501 (2008). https://doi.org/10.1103/PhysRevSTAB.11.123501

    Article  ADS  Google Scholar 

  19. R.M. Barnett et al., Review of particle properties. Phys. Rev. D 54, 1 (1996). https://doi.org/10.1103/PhysRevD.66.010001

    Article  ADS  Google Scholar 

  20. O.B. Tarasov, D. Bazin, LISE++: Design your own spectrometer. Nucl. Phys. A 746, 411–414 (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.063

    Article  ADS  Google Scholar 

  21. J. Galambos, J. Holmes, D. Olsen, ORBIT User Manual, V.1.0, SNS-ORNL-AP Tech. Note 11, March 1999. https://web.ornl.gov/~holmesja1/JHolmes/ORBIT.html

  22. J. Galambos, S. Danilov, D. Jeon, et al., ORBIT-a ring injection code with space charge, in The Proceedings of the 1999 Particle Accelerator Conference, New York (1999). https://doi.org/10.1109/PAC.1999.792230

  23. H.-F. Ji, Y. Jiao, M.-Y. Huang et al., Optimization of the collimation system for CSNS/RCS with the robust conjugate direction search algorithm. Chin. Phys. C 40(9), 097006 (2016)

    Article  ADS  Google Scholar 

  24. H. Grote, F.C. Iselin, The MAD program, Version 8.16, CERN/SL/90-13 (AP) (Rev.4) (1995). http://mad.web.cern.ch/mad/

  25. L.P. Yao, W.P. Chai, J.C. Yang et al., Beam-loss driven injection optimization for HIAF-BRing in the presence of space charge. Nucl. Instrum. Methods Phys. Res. Sect. A 951, 162876 (2020). https://doi.org/10.1016/j.nima.2019.162876

    Article  Google Scholar 

  26. G.F. Qu, W.P. Chai, J.W. Xia et al., Two-plane multi-turn injection scheme for BRing of HIAF. Nucl. Sci. Tech. 28, 114 (2017). https://doi.org/10.1007/s41365-017-0260-5

    Article  Google Scholar 

  27. N. Wang, M. Y. Huang, S. Y. Xu, et al., Optimization of the collimation system for the CSNS/RCS, in Proceedings of IPAC2012, New Orleans, Louisiana, USA (2012). https://epaper.kek.jp/IPAC2012/papers/moppd075.pdf

  28. J.A. Holmes, V. Danilov, J. Galambos, et al., Orbit: beam dynamics calculations for high-intensity rings, in The Proceedings of the EPAC 2020, Paris, France (2020). https://accelconf.web.cern.ch/e02/PAPERS/THPLE022.pdf

  29. A.W. Chao, M. Tigner, Handbook of accelerator physics and engineering. World Scientific (1999). https://doi.org/10.1142/8543

    Article  ADS  Google Scholar 

  30. C.R. Prior, H. SchÖnauer, Multi-turn injection into accumulators for heavy ion inertial fusion, in Proceedings of the 1996 European Particle Accelerator Conference, Sitges (1996). https://cds.cern.ch/record/311680/files/ps-96-037.pdf

  31. M. Dorigo, L.M. Gambardella, Ant colony system: A cooperative learning approach to the traveling salesman problem. IEE Trans. Evolut. Comput. 1(1), 53–66 (1977). https://doi.org/10.1109/4235.585892

    Article  Google Scholar 

  32. A. Colorni, M. Dorigo, V. Maniezzo. Distributed optimization by ant colonies, in Proceedings of the 1st European Conference on Artificial Life, p. 134–142 (1991). http://www-public.imtbs-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/ColorniDorigoManiezzo91.pdf

  33. M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimazation by a colony of cooperating agents. IEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  34. B. W. Montague, Fourth-order coupling resonance excited by space charge forces in a synchrotron, CERN-Report No. 68–38, CERN (1968). https://doi.org/10.5170/CERN-1968-038

  35. G. Wang, Closed orbit correction for the synchrotrons of HIMM and HIAF. PhD thesis, Chapter 6. University of Chinese Academy of Sciences (2020).

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No.11675235, 11975286) and the National Key R&D Program of China (Grant No.2019YFA0405401). The critical discussions with Dr H.F. Ji from CSNS are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Yu Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, WH., Yang, JC., Li, P. et al. Design of proton beam collimation system for HIAF-BRing. Radiat Detect Technol Methods 6, 519–529 (2022). https://doi.org/10.1007/s41605-022-00351-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00351-3

Keywords

Navigation