Skip to main content
Log in

Study on the H stripping injection for the Rapid Cycling Synchrotron of the China Spallation Neutron Source

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

The China Spallation Neutron Source (CSNS) accelerator consists of an 80 MeV H Linac and a 1.6 GeV rapid cycling synchrotron (RCS). For the injection system, the H stripping scheme is adopted to inject the Linac beam to the RCS with high precision and high efficiency. The stripping process through foil plays an important role in the injection, and the related beam losses control need to be studied in detail.

Methods

In the beam commissioning, the parameters of the stripping foil have been studied, including: structure, material, thickness, stripping efficiency, temperature, and lifetime. The measurement results are compared with the design values and some parameters of the stripping foil are optimized. With a combination of the codes Py-ORBIT and FLUKA, the beam losses caused by the foil scattering and residual H beam are simulated in detail and then compared with the actual measurement results.

Results

A double-layer HBC foil is instead of a single-layer DLC foil. With an actual thickness of 103 µg/cm2, the actual stripping efficiency is about 99.8%. The peak temperature of the main stripping foil is about 1400 K in the simulation. The foil lifetime under the design power is about 1.5 months. The beam losses caused by the foil scattering and residual H beam are the main sources of the residual doses in the injection region.

Conclusion

The parameters of the stripping foil have been optimized and some improvements are proposed. The simulation results of the beam losses caused by the foil scattering and residual H beam are nearly consistent with the measurement results which can provide some references for the CSNS-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Wei, H.S. Chen, Y.W. Chen et al., China spallation neutron source: design, R&D, and outlook. Nucl. Inst. Methods Phys. Res. A 600, 10–13 (2009). https://doi.org/10.1016/j.nima.2008.11.017

    Article  ADS  Google Scholar 

  2. J. Wei, Synchrotrons and accumulators for high-intensity proton beams. Rev. Mod. Phys. 75, 1383–1432 (2003). https://doi.org/10.1103/RevModPhys.75.1383

    Article  ADS  Google Scholar 

  3. S. Wang, S.X. Fang, S.N. Fu et al., Introduction to the overall physics design of CSNS accelerators. Chin. Phys. C 33(S-II), 1–3 (2009). https://doi.org/10.1088/1674-1137/33/S2/001

    Article  ADS  Google Scholar 

  4. J. Wei, S.N. Fu, J.Y. Tang et al., China Spallation Neutron Source: an overview of application prospects. Chin. Phys. C 33(11), 1033–1042 (2009). https://doi.org/10.1088/1674-1137/33/11/021

    Article  ADS  Google Scholar 

  5. M.Y. Huang, S. Wang, J. Qiu, N. Wang, S.Y. Xu, Effects of injection beam parameters and foil scattering for CSNS/RCS. Chin. Phys. C 37(6), 067001 (2013). https://doi.org/10.1088/1674-1137/37/6/067001

    Article  ADS  Google Scholar 

  6. X.H. Lu, M.Y. Huang, S. Wang, Injection orbit matching for a rapid cycling synchrotron. Phys. Rev. Acceler. Beams 21, 062802 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.062802

    Article  ADS  Google Scholar 

  7. M.Y. Huang, S.Y. Xu, X.H. Lu, S. Wang, Study on injection beam loss for China Spallation Neutron Source accelerator. Atom. Energy Sci. Technol. 53(9), 1708–1714 (2019). https://doi.org/10.7538/yzk.2019.53.09.1708 (in Chinese)

    Article  Google Scholar 

  8. A.I. Drozhdin, I.L. Rakhno, S.I. Striganov, L.G. Vorobiev, Modeling multiturn stripping injection and foil heating for high intensity proton drivers. Phys. Rev. Spec. Top.-Acceler. Beams 15, 011002 (2012). https://doi.org/10.1103/PhysRevSTAB.15.011002

    Article  ADS  Google Scholar 

  9. M.Y. Huang, N. Wang, J. Qiu, S. Wang, N. Huang, Study of beam loss due to particle scattering in CSNS/RCS. Atom. Energy Sci. Technol. 46(S), 530–533 (2012)

    Google Scholar 

  10. W. Chou, M. Kostin, Z. Tang, Stripping efficiency and lifetime of carbon foils. Nucl. Inst. Methods Phys. Res. A 590, 1–12 (2008). https://doi.org/10.1016/j.nima.2008.02.060

    Article  ADS  Google Scholar 

  11. N.R.S. Tait, D.W.L. Tolfree, B.H. Armitage, D.S. Whitmell, New techniques for preparation of long lived carbon strippers under heavy ion bombardment. Nucl. Inst. Methods 167, 21–24 (1979). https://doi.org/10.1016/0029-554X(79)90469-5

    Article  ADS  Google Scholar 

  12. N.R.S. Tait, D.W.L. Tolfree, D.S. Whitmell, B.H. Armitage, The behavior and physical characteristics of carbon stripper foils prepared by different methods. Nucl. Inst. Methods 163, 1–14 (1979). https://doi.org/10.1016/0029-554X(79)90027-2

    Article  ADS  Google Scholar 

  13. M.A. Plum, S.M. Cousineau, J. Galambos et al., Stripper foil failure modes and cures at Osk Ridge Spallation Neutron Source. Phys. Rev. Spec. Top.-Acceler. Beams 14, 030102 (2011). https://doi.org/10.1103/PhysRevSTAB.14.030102

    Article  ADS  Google Scholar 

  14. M.S. Gulley, P.B. Keating, H.C. Bryant et al., Measurement of H-, H0, and H+ yields produced by foil stripping of 800-MeV H- ions. Phys. Rev. A 53, 3201–3210 (1996). https://doi.org/10.1103/PhysRevA.53.3201

    Article  ADS  Google Scholar 

  15. R.C. Webber, C. Hojvat, Measurement of the electron loss cross sections for negative hydrogen ions on carbon at 200 MeV. IEEE Trans. Nucl. Sci. 26(3), 4012–4014 (1979). https://doi.org/10.1109/TNS.1979.4330681

    Article  ADS  Google Scholar 

  16. J.X. Chen, J.B. Yu, L. Kang et al., Stripper foil installation and aerodynamics analysis. High Power Laser Particle Beams 30(2), 025101 (2018). https://doi.org/10.11884/HPLPB201830.170114 (in Chinese)

    Article  Google Scholar 

  17. I. Sugai, A. Takagi, Y. Takeda et al., Performance characteristics of HBC stripper foils irradiated by 650 keV H- and high intensity DC ion beams. Nucl. Inst. Methods Phys. Res. B 328, 70–77 (2014). https://doi.org/10.1016/j.nimb.2014.03.002

    Article  ADS  Google Scholar 

  18. I. Sugai, Y. Takeda, M. Oyaizu et al., Development of thick hybrid-type carbon stripper foils with high durability at 1800K for RCS of J-PARC. Nucl. Inst. Methods Phys. Res. A 561, 16–23 (2006). https://doi.org/10.1016/j.nima.2005.12.225

    Article  ADS  Google Scholar 

  19. Y. Yamazaki, M. Yoshimoto, P.K. Saha et al., Analyses and the effect of impurities contained in charge stripper foils for the 3-GeV RCS of J-PARC. J. Radioanal. Nucl. Chem. 305, 859–864 (2015). https://doi.org/10.1007/s10967-015-4106-5

    Article  Google Scholar 

  20. M. Yoshimoto, Y. Yamazaki, T. Nakanoya et al., Progress status in fabrication of HBC stripper foil for 3-GeV RCS at J-PARC in Tokai site. EPJ Web Conf. 229, 01001 (2020). https://doi.org/10.1051/epjconf/202022901001

    Article  Google Scholar 

  21. W. Blokland, N. Evans, C. Luck et al., Injection foil temperature measurements at the SNS accelerator, in Proceedings of 61st ICFA advanced beam dynamics workshop (HB2018), Daejeon, Korea (2018), pp. 104–109. https://doi.org/10.18429/JACoW-HB2018-TUP2WE01

  22. P.K. Saha, M. Yoshimoto, S. Hatakeyama et al., First measurement and online monitoring of the stripper foil thinning and pinhole formation to achieve a longer foil lifetime in high-intensity accelerators. Phys. Rev. Accel. Beams 23, 082801 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.082801

    Article  ADS  Google Scholar 

  23. I. Sugai, Y. Takeda, M. Oyaizu et al., Development of hybrid type carbon stripper foils with high durability against 1800k for RCS of J-PARC, in Proceedings of PAC07, Albuquerque, New Mexico, USA (2007), pp. 242–244. https://doi.org/10.1109/PAC.2007.4440172

  24. S.G. Lebedev, A.S. Lebedev, Calculation of the lifetimes of thin stripper targets under bombardment of intense pulsed ions. Phys. Rev. Spec. Top.-Acceler. Beams 11, 020401 (2008). https://doi.org/10.1103/PhysRevSTAB.11.020401

    Article  ADS  Google Scholar 

  25. S.A. Miller, C.S. Jolivet, J.O. Stoner Jr. et al., New methods for testing cyclotron carbon stripper foils. Nucl. Inst. Methods Phys. Res. A 590, 57–65 (2008). https://doi.org/10.1016/j.nima.2008.02.068

    Article  ADS  Google Scholar 

  26. H. Hotchi, H. Harada, N. Hayashi et al., Beam commissioning and operation of the Japan proton accelerator research complex 3-GeV rapid cycling synchrotron. Prog. Theor. Exp. Phys. 2012(1), 02B003 (2012). https://doi.org/10.1093/ptep/pts021

    Article  Google Scholar 

  27. M.Y. Huang, S.Y. Xu, Y.W. An et al., Study on the anti-correlated painting injection scheme for the Rapid Cycling Synchrotron of the China Spallation Neutron Source. Nucl. Inst. Methods Phys. Res. A 1007, 165408 (2021). https://doi.org/10.1016/j.nima.2021.165408

    Article  Google Scholar 

  28. S.Y. Xu, H. Liu, J. Peng et al., Beam commissioning and beam loss control for CSNS accelerators. J. Instrum. 15, P07023 (2020). https://doi.org/10.1088/1748-0221/15/07/P07023

    Article  Google Scholar 

  29. J. Gabambos, S. Danilov, D. Jeon et al., ORBIT-A ring injection code with space charge, in Proceedings of the 1999 Particle Accelerator Conference, New York, USA (1999), pp. 3143–3145. https://doi.org/10.1109/PAC.1999.792230

  30. J.F. Ostiguy and J. Holmes, PyORBIT: a Python shell for ORBIT, in Proceedings of the 2003 Particle Accelerator Conference, Portland, USA (2003), pp. 3503–3505. https://doi.org/10.1109/PAC.2003.1289962

  31. A. Shishlo, S. Cousineau, J. Holmes, T. Gorlov, The particle accelerator simulation code PyORBIT. Procedia Comput. Sci. 51, 1272–1281 (2015). https://doi.org/10.1016/j.procs.2015.05.312

    Article  Google Scholar 

  32. F. Ballarini, G. Battistoni, M. Brugger et al., The physics of the FLUKA code: recent developments. Adv. Space Res. 40, 1339–1349 (2007). https://doi.org/10.1016/j.asr.2007.05.031

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y.L. Zhang, L. Kang and other CSNS colleagues for helpful discussions. This work is jointly supported by the National Natural Science Foundation of China (Project Nos. 12075134 and U1832210) and the Guangdong Basic and Applied Basic Research Foundation (Project No. 2021B1515120021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, MY., Xu, S., Chen, J. et al. Study on the H stripping injection for the Rapid Cycling Synchrotron of the China Spallation Neutron Source. Radiat Detect Technol Methods 6, 201–208 (2022). https://doi.org/10.1007/s41605-022-00326-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00326-4

Keywords

Navigation