Skip to main content
Log in

Construction of high-resolution energy—time-of-flight spectrometer for determination of fission fragment mass distributions

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

With the aim of determining mass yield distributions of primary fission products, a one-arm spectrometer was developed based on kinetic energy and time-of-flight correlation measurement technique.

Methods

An axial grid ionization chamber (GIC) was designed for energy detecting. In order to minimize energy losses and straggling, a thin silicon nitride film with a thickness of 100 nm was performed as the entrance window of the GIC. The energy resolution is 0.38% for 80 MeV 63Cu particles. Two-timing detectors based on the detection of secondary emission electrons by microchannel plates (MCPs) constitute the time pick-off system, and the time-of-flight resolution is better than 200 ps (FWHM) measured with a 241Am α source. With a flight path length of 47.6 cm, the path length resolution is 0.21%.

Results and conclusion

The first result of mass distribution from 252Cf spontaneous fission was reported. Energy losses of fragments in dead layers of the spectrometer were corrected event-by-event depend on the Monte Carlo calculation. The mass resolution for light fission fragments peak A = 107 amu is 1.3 aum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.C. Wahl, A.E. Norris, R.A. Rouse et al., Products from thermal-neutron induce fission of 235U: a correlation of radiochemical charge and mass distribution data. Washington Univ., St. Louis, Mo. 1970. https://doi.org/10.2172/4185169

  2. L. Toppare, H.N. Erten, N.K. Aras, Yields of products in the spontaneous fission of 252Cf by direct γ-ray spectroscopy. Can. J. Chem. 61(4), 649–651 (1983). https://doi.org/10.1139/v83-119

    Article  Google Scholar 

  3. E. Moll, H. Schrader, G. Siegert et al., Analysis of 236U-fission products by the recoil separator “Lohengrin.” Nucl. Instrum. Methods 123(3), 615–617 (1975). https://doi.org/10.1016/0029-554X(75)90219-0

    Article  ADS  Google Scholar 

  4. C. Budtz-Jørgensen, H.H. Knitter, C. Straede et al., A twin ionization chamber for fission fragment detection. Nucl. Instrum. Methods A 258(2), 209–220 (1987). https://doi.org/10.1016/0168-9002(87)90058-1

    Article  ADS  Google Scholar 

  5. H.W. Schmitt, W.E. Kiker, C.W. Williams, Precision measurements of correlated energies and velocities of 252Cf fission fragments. Phys. Rev 137(4B), B837 (1965). https://doi.org/10.1103/PhysRev.137.B837

    Article  ADS  Google Scholar 

  6. H. Henschel, A. Kohnle, H. Hipp et al., Absolute measurement of velocities, masses and energies of fission fragments from californium-252 (SF). Nucl. Instrum. Methods 190(1), 125–134 (1981). https://doi.org/10.1016/0029-554X(81)90213-5

    Article  ADS  Google Scholar 

  7. N. Boucheneb, P. Geltenbort, M. Asghar et al., High resolution measurements of mass, energy and nuclear charge correlations for 229Th (nth, f) with the cosi fan tutte spectrometer. Nucl. Phys. A 502, 261–270 (1989). https://doi.org/10.1016/0375-9474(89)90666-0

    Article  ADS  Google Scholar 

  8. M. Asghar, N. Boucheneb, G. Medkour et al., Measurement of cold fission for 229Th (nth, f), 232U (nth, f) and 239Pu (nth, f) with the Cosi fan tutte spectrometer. Nucl. Phys. A 560(2), 677–688 (1993). https://doi.org/10.1016/0375-9474(93)90040-5

    Article  ADS  Google Scholar 

  9. P. Schillebeeckx, C. Wagemans, P. Geltenbort et al., Investigation of mass, charge and energy of 241Pu (nth, f) fragments with the Cosi-Fan-Tutte spectrometer. Nucl. Phys. A 580(1), 15–32 (1994). https://doi.org/10.1016/0375-9474(94)90812-5

    Article  ADS  Google Scholar 

  10. K. Meierbachtol, F. Tovesson, D. Shields et al., The SPIDER fission fragment spectrometer for fission product yield measurements. Nucl. Instrum. Methods A 788, 59–66 (2015). https://doi.org/10.1016/j.nima.2015.02.032

    Article  ADS  Google Scholar 

  11. J. Matarranz, I. Tsekhanovich, A.G. Smith et al., A multiparameter nuclear-fission experiment: can all be obtained at once? Phys. Procedia. 47, 76–81 (2013). https://doi.org/10.1016/j.phpro.2013.06.012

    Article  ADS  Google Scholar 

  12. M.O. Frégeau, S. Oberstedt, T. Gamboni et al., First results from the new double velocity-double energy spectrometer VERDI. Nucl. Instrum. Methods A 817, 35–41 (2016). https://doi.org/10.1016/j.nima.2016.02.011

    Article  ADS  Google Scholar 

  13. D. Doré, F. Farget, F.R. Lecolley et al., Falstaff: A new tool for fission fragment characterization. Nucl. Data Sheets. 119, 346–348 (2014). https://doi.org/10.1016/j.nds.2014.08.095

    Article  ADS  Google Scholar 

  14. O. Bunemann, T.E. Cranshaw, J.A. Harvey, Design of grid ionization chambers. Can. J. Res. 27(5), 191–206 (1949). https://doi.org/10.1139/cjr49a-019

    Article  Google Scholar 

  15. F.J. Hambsch, J. Van Aarle, R. Vogt, Is there a pulse height defect for methane? Nucl. Instrum. Methods A 361(1–2), 257–262 (1995). https://doi.org/10.1016/0168-9002(95)00190-5

    Article  ADS  Google Scholar 

  16. G. Simon, J. Trochon, F. Brisard et al., Pulse height defect in an ionization chamber investigated by cold fission measurements. Nucl. Instrum. Methods A 286(1–2), 220–229 (1990). https://doi.org/10.1016/0168-9002(90)90224-T

    Article  ADS  Google Scholar 

  17. P. Grabitz, V. Andrianov, S. Bishop et al., Determination of nuclear charge distributions of fission fragments from 235U(nth, f) with calorimetric low temperature detectors. J. Low Temp. Phys. 184(3–4), 944–951 (2016). https://doi.org/10.1007/s10909-016-1566-0

    Article  ADS  Google Scholar 

  18. A.E.D. Heylen, Ionization coefficients and sparking voltages from methane to butane. Int. J. Electron. 39(6), 653–660 (1975). https://doi.org/10.1080/00207217508920532

    Article  Google Scholar 

  19. H. Schindler, R. Veenhof, Garfield++—simulation of ionisation based tracking detectors (2018). http://garfieldpp.web.cern.ch/garfieldpp.

  20. S. Agostinelli, J. Allison, K. Amako et al., GEANT4-a simulation toolkit. Nucl. Instrum. Methods A 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  21. H.L. Adair, P.R. Kuehn, Preparation of 252Cf neutron and fission-fragment sources. Nucl. Instrum. Methods 114(2), 327–332 (1974). https://doi.org/10.1016/0029-554X(74)90551-5

    Article  ADS  Google Scholar 

  22. J.D. Bowman, R.H. Heffner, A novel zero time detector for heavy ion spectroscopy. Nucl. Instrum. Methods 148(3), 503–509 (1978). https://doi.org/10.1016/0029-554X(78)91032-7

    Article  ADS  Google Scholar 

  23. F. Busch, W. Pfeffer, B. Kohlmeyer et al., A position-sensitive transmission time detector. Nucl. Instrum. Methods 171(1), 71–74 (1980). https://doi.org/10.1016/0029-554X(80)90011-7

    Article  ADS  Google Scholar 

  24. W. Starzecki, A.M. Stefanini, S. Lunardi et al., A compact time-zero detector for mass identification of heavy ions. Nucl. Instrum. Methods 193(3), 499–505 (1982). https://doi.org/10.1016/0029-554X(82)90242-7

    Article  ADS  Google Scholar 

  25. K.E. Pferdekämper, H.G. Clerc, Energy spectra of secondary electrons ejected by ions from foils. Z Physik A 280, 155–164 (1977). https://doi.org/10.1007/BF01409544

    Article  ADS  Google Scholar 

  26. C.D. Coryell, M. Kaplan, R.D. Fink, Search for correlations of most probable nuclear charge ZP of primary fission fragments with composition and excitation energy. Can. J. Chem. 39(3), 646–663 (1961). https://doi.org/10.1139/v61-078

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 11790322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liu, S. & Yang, Y. Construction of high-resolution energy—time-of-flight spectrometer for determination of fission fragment mass distributions. Radiat Detect Technol Methods 6, 102–110 (2022). https://doi.org/10.1007/s41605-021-00303-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-021-00303-3

Keywords

Navigation