Skip to main content
Log in

Improvement in the 3D shower shapes description in the Monte Carlo simulation for a lead-scintillating fiber electromagnetic calorimeter

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Background

The lead-scintillating fiber electromagnetic calorimeter (ECAL) of the Alpha Magnetic Spectrometer measures the energy of positrons/electrons and separates them from hadrons. The electromagnetic shower shapes from Monte Carlo (MC) simulation and data show disagreement.

Purpose

Tuning the MC to make the shower shapes from MC and data agree with each other.

Methods

The tuning is based on a 3D electromagnetic shower model.

Results

After tuning, the electromagnetic shower shapes are well described by MC up to TeV. As a result, the output of ECAL electron/proton separation estimator, ECAL BDT, shows that MC and data are in good agreement. The proton rejection power of the ECAL BDT trained with MC electron samples is improved by a factor of 5 at \(\sim \,800\,\hbox {GeV}\) compared to the one trained with data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Ting, The alpha magnetic spectrometer on the international space station. Nucl. Phys. B Proc. Suppl. 243–244, 12–24 (2013)

    Article  ADS  Google Scholar 

  2. S. Agostinelli et al., GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  3. J. Allison et al., Recent developments in GEANT4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016)

    Article  ADS  Google Scholar 

  4. M. Aguilar et al., First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 141102 (2013)

  5. A. Kounine et al., Precision measurement of 0.5 GeV–3 TeV electrons and positrons using the AMS electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 869, 110–117 (2017)

    Article  ADS  Google Scholar 

  6. L. Accardo et al., High statistics measurement of the positron fraction in primary cosmic rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113, 121101 (2014)

  7. M. Aguilar et al., Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett. 113, 121102 (2014)

    Article  ADS  Google Scholar 

  8. M. Aguilar et al., Precision measurement of the \((e^++e^-)\) flux in primary cosmic rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113, 221102 (2014)

    Article  ADS  Google Scholar 

  9. C. Adloff et al., The AMS-02 lead-scintillating fibers electromagnetic calorimeter. Nucl. Instrum. Methods Phys. Res. A 714, 147–154 (2013)

    Article  ADS  Google Scholar 

  10. Z. Li et al., Correction of PMT position effect for a lead-scintillating fiber electromagnetic calorimeter. Chin. Phys. C 37(02), 026201 (2013)

    Article  ADS  Google Scholar 

  11. Z. Li et al., Angular reconstruction of a lead scintillating-fiber sandwiched electromagnetic calorimeter. Chin. Phys. C 38(05), 056203 (2014)

    Article  ADS  Google Scholar 

  12. C. Zhang et al., Dead cell and side leakage correction for a lead-scintillating fiber electromagnetic calorimeter. Chin. Phys. C 40(09), 096204 (2016)

    Article  ADS  Google Scholar 

  13. E. Longo, I. Sestili, Monte Carlo calculation of photon-initiated electromagnetic showers in lead glass. Nucl. Instrum. Methods 128, 283–307 (1975)

    Article  ADS  Google Scholar 

  14. G. Grindhammer, S. Peters, The parameterized simulation of electromagnetic showers in homogeneous and sampling calorimeters (2000). arXiv:hep-ex/0001020

  15. S. Zhang et al., Improvements on the particle identification with dead cell and side leakage corrections for the electromagnetic calorimeter of the Alpha Magnetic Spectrometer. Radiat. Detect. Technol. Methods 2, 33 (2018)

    Article  Google Scholar 

  16. M. Aguilar et al., Towards understanding the origin of cosmic-ray positrons. Phys. Rev. Lett. 122, 041102 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Weiwei Xu for useful discussions on the 3D shower model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu-Hao Li.

Additional information

Supported by National Natural Science Foundation of China (11220101004), the UCAS Joint Ph.D. Training Program and the China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XQ., Li, ZH., Tang, ZC. et al. Improvement in the 3D shower shapes description in the Monte Carlo simulation for a lead-scintillating fiber electromagnetic calorimeter. Radiat Detect Technol Methods 3, 34 (2019). https://doi.org/10.1007/s41605-019-0113-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-019-0113-3

Keywords

Navigation