Skip to main content
Log in

Electron density map evaluation functions for determining the quality of protein crystal structures

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Background

Finding methods to judge the quality of X-ray crystallographic information is an active research topic. The quality of electron density maps reconstructed by Fourier transform is always limited by the finite resolution, the amplitude/phase error and the completeness of diffraction data. At present, the R value and effective resolution are common ways of evaluating the quality of electron density maps. Unfortunately, the current evaluation methods are only dependent on diffraction amplitude, without any phase information.

Methods

Advanced evaluation functions in real space are designed to estimate the electron density map quality. The electron density map definition evaluation function relies on the atomicity of the electron density distribution. We use the power spectrum electron density entropy in protein crystallography for the first time. These two functions include both structure factor amplitudes and phases via the Fourier transform of electron density map.

Results

We carry out tests on synthetic data sets of known structures, varying the resolution and error, and draw the quality curves of electron density maps with theoretical, noisy and experimental diffraction data by two evaluation functions at different resolutions. The curves reveal the optimum structure and resolution of proteins clearly.

Conclusions

The work presented here offers new methods to evaluate the qualities of the electron density maps of proteins with slight differences, and brand new indicators to select the optimum diffraction resolution of protein structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Lattman, D. DeRosier, Acta Cryst. A 64, 341–344 (2008)

    Article  Google Scholar 

  2. V. Luzzati, Acta Cryst. 6, 142–152 (1953)

    Article  Google Scholar 

  3. R.J. Read, Methods Enzymol. 277, 110–128 (1997)

    Article  Google Scholar 

  4. S. Munshi, Acta Cryst. D 54(6–2), 1295–1305 (1998)

    Article  Google Scholar 

  5. G. Oszlányi, A. Sütő, Acta Cryst. A 60, 134–141 (2004)

    Article  Google Scholar 

  6. M.S. Weiss, Appl. Cryst. 34, 130–135 (2001)

    Article  Google Scholar 

  7. L. Chen, W.J. Li, C. Chen, H. Qin, J.L. Lai, Comput. Eng. Appl. 49, 152–155 (2013)

    Google Scholar 

  8. A.L. Patterson, Phys. Rev. 46, 372–376 (1934)

    Article  ADS  Google Scholar 

  9. G. Oszlányi, A. Süto, Acta Cryst. A60, 134–141 (2004)

    Article  Google Scholar 

  10. G. Oszlányi, A. Süto, Acta Cryst. A64, 123–134 (2008)

    Article  Google Scholar 

  11. M.M. Woolfson, Acta Cryst. A43, 593–612 (1987)

    Article  Google Scholar 

  12. M.M. Woolfson, H.F. Fan, Physical and Non-physical Methods of Solving Crystal Structure (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  13. H. Li, M. He, Z. Zhang, Acta Cryst. A 71, 526–533 (2015)

    Article  Google Scholar 

  14. D.M. Collins, Nature 298, 49–51 (1982)

    Article  ADS  Google Scholar 

  15. M. Sakata, M. Sato, Acta Cryst. A46, 263–270 (1990)

    Article  Google Scholar 

  16. M. Shelhamer, Nonlinear Dynamics in Physiology : A State-Space Approach (World Scientific, Singapore, 2007)

    MATH  Google Scholar 

  17. S. Akselrod, D. Gordon, F.A. Ubel, D.C. Shannon, A.C. Berger, R.J. Cohen, Science 213, 220–222 (1981)

    Article  ADS  Google Scholar 

  18. J. Beran, Statistics for Long-Memory Processes (Chapman & Hall, London, 1994)

    MATH  Google Scholar 

  19. R.W. Harrison, J. Opt. Soc. Am. A 10, 1046–1055 (1993)

    Article  ADS  Google Scholar 

  20. Z. Chen, Comput. Netw. 136, 80–94 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB08030103), the National Natural Science Foundation of China (31570744) and the National Key Research and Development Project (2017YFA0504900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhui Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Geng, Z., Zhang, H. et al. Electron density map evaluation functions for determining the quality of protein crystal structures. Radiat Detect Technol Methods 2, 42 (2018). https://doi.org/10.1007/s41605-018-0065-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-018-0065-z

Keywords

Navigation