Skip to main content

Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps

  • Chapter
Cathodoluminescence in Geosciences

Abstract

The first report on cathodoluminescence (CL) of zircon goes back to the second half of the nineteenth century (Crookes 1879), however, only in the last 40 years has this phenomenon been addressed more frequently. The main CL emission bands have been related to different trace elements such as Mn and V (Leverenz 1968), Hf and Y (Ono 1976), Dy (e.g. Mariano 1978), Gd and Tb (e.g. Ohnenstetter et al. 1991). These elements would act as “activators” and enhance the “intrinsic” luminescence of pure zircon by non-stoichiometry, lattice damage or by structural defects (Marshall 1988). It has also been pointed out that elements such as Y can have a “quenching” effect on CL of zircon (Ohnenstetter et al. 1991) as they reduce the CL emission. A second approach to CL relates to the studies of CL zoning patterns to assist in the interpretation of U-Pb dating. This tool has proved to be indispensable when combined with U-Pb zircon dating by ion microprobe (e.g. SHRIMP). CL allows the identification of different types of zircon domains that then may be dated in situ by SHRIMP, with spatial resolutions between ca. 30 µm (e.g. Gebauer et al. 1988) and 15–20 µm (e.g. Gebauer 1996; Vavra et al. 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnicoat AC, Rex DC, Guise PG, Cliff RA (1995) The timing of and nature of greenschist facies deformation and metamorphism in the upper Pennine Alps. Tectonics 14 (2): 279–293

    Article  Google Scholar 

  • Bearth P (1967) Die Ophiolithe der Zone von Zermatt-Saas Fee. Stämpfli and Cie, Bern

    Google Scholar 

  • Brady JB (1995) Diffusion data for silicate minerals, glasses and liquids. In: TJ Ahrens (ed) Mineral physics and crystallography. A handbook of physical constants 2. AGU books board pp 269–290

    Chapter  Google Scholar 

  • Claesson S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. I. Conventional U-Pb zircon and Sm-Nd whole rock data. Contributions to Mineralogy and Petrology 97: 196–204

    Article  Google Scholar 

  • Compagnoni R (1977) The Sesia-Lanzo Zone: high pressure-low temperature metamorphism in the Austroalpine continental margin. Rendiconti della Societe Italiana di Mineralogia e Petrologia 33: 335–374

    Google Scholar 

  • Compston W, Williams IS, Kirschvink JL, Zhang Z, Ma G (1992) Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, London 149: 171–184

    Google Scholar 

  • Crookes W (1879) Contributions to molecular physics in high vacua. Philosophical Transactions of the Royal Society 170: 641–662

    Article  Google Scholar 

  • Dal Piaz G. V (1993) Evolution of Austro-Alpine and Upper Pennidic Basement in the Northwestern Alps from Variscan Convergence to Post-Variscan Extension. In: JF von Raumer, F Neubauer (eds) Pre Mesozoic Geology in the Alps. Springer Verlag, Berlin, Heidelberg, New York, pp 327–344

    Google Scholar 

  • Dal Piaz G. V, Hunziker J. C, and Martinotti G (1972) La Zona Sesia-Lanzo e l’evoluzione tettonometamorfica delle Alpi Nord-Occidentali interne. Memorie della Societa Geologica Italiana 11: 433–460

    Google Scholar 

  • Duchêne S, Blichert-Toft J, Luais B, Têlouk P, Lardeaux J.-M, and Albarêde F (1997) The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature 387: 586–589

    Article  Google Scholar 

  • Fry N, Barnicoat AC (1987) The tectonic implications of the high-pressure metamorphism in the western Alps. Journal of the Geological Society, London 144: 653–359

    Google Scholar 

  • Gebauer D (1996) A P-T-t-Path for an (Ultra?-) High-Pressure Ultramafic/Mafic Rock-Association and its Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphic Zircon Domains. Example: Alpe Arami (Central Swiss Alps). In: Earth Processes: Reading the Isotopic Code. American Geophysical Union, pp 309–328

    Google Scholar 

  • Gebauer D, Quadt A, Compston W, Williams IS, Grünenfelder M (1988) Archean zircons in a retrograded, Caledonian eclogite of the Gotthard Massif ( Central Alps, Switzerland). Schweizerische Mineralogische und Petrographische Mitteilungen 68: 485–490

    Google Scholar 

  • Gebauer D, Rubatto D (1997) 35 Ma old UHP-metamorphism of the Dora Maira Massif and other Tertiary HP- and UHP- events in the Central and Western Alps: Geodynamic consequences. Schweizerische Mineralogische und Petrographische Mitteilungen

    Google Scholar 

  • Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterisation of oscillatory zoning and overgrowths in zircons using 3 MeV m-PIXE. Canadian Mineralogist 31: 637–647

    Google Scholar 

  • Hanchar J.M, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology 110: 1–13

    Google Scholar 

  • Hanchar JM, Rudnick RL (1995) Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crust xenoliths. Lithos 36: 289–303

    Google Scholar 

  • Inger S, Ramsbotham W, Cliff RA, Rex DC (1996) Metamorphic evolution of the Sesia-Lanzo Zone, Western Alps: time constraints from multi-system geochronology. Contributions to Mineralogy and Petrology 126: 152–168

    Article  Google Scholar 

  • Leverenz HW (1968) An introduction to luminescence of solids. Dover

    Google Scholar 

  • Mariano AN (1978) The application of cathodoluminescence for carbonatite exploration and characterisation. Int. Symp. on Carbonatites, 1st, 39–57

    Google Scholar 

  • Marshall DJ (1988) Cathodoluminescence of geological materials. Uuw in Hyman

    Google Scholar 

  • Ohnenstetter D, Cesbron F, Remond G, Caruba R, Claude JM (1991) Emission de cathodoluminescence de deux populations de zircons naturels: tentative d’interpretation. Compt Rendu de l’Academie de Sciences, Paris 113 ( Ser. II ), 641–647

    Google Scholar 

  • Ono A (1976) Chemistry and zoning of zircons from some Japanese granitic rocks. J. Japan. Assoc. Min. Petr. Econ. Geol. 71:-17

    Google Scholar 

  • Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology 110: 463–472

    Article  Google Scholar 

  • Pidgeon RT, Wilde SA, Compston W, Shield MV (1990) Archaean evolution of the Wongan Hills Greenstone Belt, Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences 37: 279–292

    Google Scholar 

  • Pognante U (1989) Tectonic implications of lawsonite formation in the Sesia zone (Western Alps). Tectonophysics 162: 219–227

    Article  Google Scholar 

  • Reinecke T (1991) Very-high-pressure metamorphism and uplift of coesite-bearing metasedi- ments from the Zermatt-Saas zone, Western Alps. European Journal of Mineralogy 3: 7–17

    Google Scholar 

  • Rubatto D (1998) Dating of pre-Alpine magmatism, Jurassic ophiolites and Alpine subductions in the Western Alps. PhD Doctoral thesis, ETH, Swiss Federal Institute of Technology

    Google Scholar 

  • Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone ( Western Alps ). Earth and Planetary Science Letters 167: 141–158

    Google Scholar 

  • Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt - Saas-Fee ophiolites: Implications for the geodynamic evolution of the Central and Western Alps. Contributions to Mineralogy and Petrology 132: 269–287

    Google Scholar 

  • Schärer U, Kornprobst J, Beslier M.-O, Boillot G, and Girardeau J (1995) Gabbro and related rock emplacement crust: U-Pb geochronological and geochemical constraints for the Galicia passive margin ( Spain ). Earth and Planetary Science Letters 130: 187–200

    Google Scholar 

  • Shimizu N (1990) The oscillatory trace element zoning of augite phenocrysts. Earth Sc. Rev. 29, 27–37

    Google Scholar 

  • Sommerauer J (1974) Trace elements distribution patterns and mineralogical stability of zircons–An application for combined electron microprobe techniques. Electron Microscopy Society of Southern Africa, Proceedings 4: 71–72

    Google Scholar 

  • Van Breemen O, Henderson JB, Loveridge WD, Thompson PH (1987) U-Pb zircon and monazite geochronology and zircon morphology of granulites and granite from the Thelon Tectonic Zone, Healey Lake and Artillery Lake map areas, N.W.T. Current Research Geological Survey of Canada, Part A 87–1A(2): 783–801

    Google Scholar 

  • Vavra G, Gebauer D, Schmidt R, Compston W (1996) Multiple zircon growth and recrystallisation during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe ( SHRIMP) study. Contributions to Mineralogy and Petrology 122, 337–358

    Google Scholar 

  • Williams I.S, Claesson S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy and Petrology 97: 205–217

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubatto, D., Gebauer, D. (2000). Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D. (eds) Cathodoluminescence in Geosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04086-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04086-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08526-0

  • Online ISBN: 978-3-662-04086-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics