Skip to main content
Log in

Variable magnetic fabrics under heterogeneous deformation across a shallow fault zone in the Iberian Chain (Monroyo thrust, N Spain)

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

A Cenozoic, N100E-striking thrust fault located in the Iberian Chain, provides an opportunity for testing the applicability of anisotropy of magnetic susceptibility (AMS) to the study of fault rocks deformation in shallow fault zones. The Monroyo thrust, which is probably a splay of the Castellote–Herbers fault, involves Cretaceous and Paleogene rocks in its hanging wall and footwall, respectively, shows a history of frontal thrusting without a strike-slip component. Fault kinematics are inferred from macro- (mapped trace of the thrust surface and folds in the Cretaceous series of the hanging wall) and meso-structures (pressure-solution foliation in Paleocene conglomerates of its footwall). The studied segment of the Monroyo thrust shows a 20 m thick fault zone consisting of brecciated limestones, marls and clays, showing pressure-solution foliation and oriented phyllosilicates (muscovite and chlorite), that can be identified in X-ray diffraction analysis. Analysis of AMS in fault rocks indicates that magnetic fabrics are dependent on the deformation degree, which is interpreted to vary across this relatively narrow fault zone. With increasing deformation, the magnetic lineation changes from parallel to the intersection lineation between foliation and shear planes in the area closest to the hanging wall, to a scattered pattern within the foliation plane in intermediate areas, and finally it gets parallel to the projection of the transport direction onto the magnetic foliation plane near the contact with the footwall (pitch of 90º within the foliation plane). The results obtained also give clues on the tectonic history of the Iberian Chain, in which frontal, NNE-directed thrusting seems to be the main mechanism for E–W trending basement-involved thrusts, in the linking zone between the Iberian Chain and the Catalonian Range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alvaro, M. (1991). Tectónica. In: Mapa Geológico de Daroca 1:200.000. Instituto Tecnológico GeoMinero de España (ITGE, Madrid, Spain), 40(7–5), 177–204.

  • Alvaro, M., Capote, R., & Vegas, R. (1979). Un modelo de evolución geotectónica para la Cadena Celtibérica. Acta Geológica Hispánica, 14(1), 172–177.

    Google Scholar 

  • Antolín-Tomás, B., Liesa, C. L., Casas, A. M., & Gil-Peña, I. (2007). Geometry of fracturing linked to extension and basin formation in the Maestrazgo basin (Eastern Iberian Chain, Spain). Revista de la Sociedad Geológica de España, 20(3–4), 351–365.

    Google Scholar 

  • Biedermann, A. R., Bender Koch, C., Lorenz, W. E. A., & Hirt, A. M. (2014). Low-temperature magnetic anisotropy in micas and chlorite. Tectonophysics, 629, 63–74.

    Article  Google Scholar 

  • Calvín-Ballester, P., & Casas, A. (2014). Folded Variscan thrusts in the Herrera unit of the Iberian range (NE Spain). Geological Society, London, Special Publications, 394(1), 39–52.

    Article  Google Scholar 

  • Canérot, J., & Leyva, F. (1978). Mapa geológico de España a escala 1:50.000 de la hoja Nº 520 (Peñarroya de Tastavins) y memoria. Instituto Geológico y Minero de España (IGME, Madrid, Spain).

    Google Scholar 

  • Capote, R., Muñoz, J. A., Simón, J. L., Liesa, C. L., & Arlegui, L. E. (2002). Alpine tectonics I: The alpine system north of the Betic Cordillera. In W. Gibbons & T. Moreno (Eds.), Geology of Spain (pp. 367–400). London: The Geological Society.

    Chapter  Google Scholar 

  • Casas, A. M., Casas, A., Pérez, A., Tena, S., Barrier, L., Gapais, D., et al. (2000). Syn-tectonic sedimentation and thrust-and-fold kinematics at the intra-mountain Montalbán Basin (northern Iberian Chain, Spain). Geodinamica Acta, 13(1), 1–17.

    Google Scholar 

  • Casas, A. M., Cortés, A., Gapais, D., Nalpas, T., & Román, T. (1998). Modelización analógica de estructuras asociadas a compresión oblicua y transpresión, Ejemplos del NE peninsular. Revista de la Sociedad Geológica de España, 11(3–4), 137–150.

    Google Scholar 

  • Casas-Sainz, A. M., Cortés-Gracia, A. L., & Maestro-González, A. (2000). Intraplate deformation and basin formation during the Tertiary within the northern Iberian plate: Origin and evolution of the Almazán Basin. Tectonics, 19(2), 258–289.

    Article  Google Scholar 

  • Casas-Sainz, A. M., & Faccenna, C. (2001). Tertiary compressional deformation of the Iberian plate. Terra Nova, 13(4), 281–288.

    Article  Google Scholar 

  • Casas-Sainz, A. M., Gil-Imaz, A., Simón, J. L., Izquierdo-Llavall, E., Aldega, L., Román-Berdiel, T., Osácar, M.C., Pueyo-Anchuela, O., Ansón, M., García-Lasanta, C., Corrado, S., Invernizzi, C., Chiaricchi, C. (2018). Strain indicators and magnetic fabric in intraplate fault zones: Case study of Daroca thrust, Iberian Chain, Spain. Tectonophysics, 730, 29–47.

    Article  Google Scholar 

  • Casas-Sainz, A. M., Román-Berdiel, T., Oliva-Urcia, B., García-Lasanta, C., Villalaín, J. J., Aldega, L., et al. (2017). Multidisciplinary approach to constrain kinematics of fault zones at shallow depths: a case study from the Cameros–Demanda thrust (North Spain). International Journal of Earth Sciences, 106, 1023–1055.

    Article  Google Scholar 

  • Chadima, M., & Hrouda, F. (2009). Cureval 8.0: Thermomagnetic curve browser for windows. Nové město: Agico Inc., Czech Republic.

  • Chadima, M., & Jelinek, V. (2009). Anisoft 4.2: Anisotropy data browser for windows. Nové město: Agico Inc., Czech Republic.

  • Cortés Gracia, A. L., & Casas Sainz, A. M. (1996). Deformación alpina de zócalo y cobertera en el borde norte de la Cordillera Ibérica (Cubeta de Azuara–Sierra de Herrera). Revista de la Sociedad Geológica de España, 9(1–2), 51–66.

    Google Scholar 

  • Davis, B. L., Smith, D. K., & Holomany, M. A. (1989). Tables of experimental reference intensity ratios, Table no. 2. Powder Diffraction Journal, 4(4), 201–204.

    Article  Google Scholar 

  • De Vicente, G. (2004). Estructura alpina del Antepaís Ibérico. In J. A. Vera (Ed.), Geología de España, Sociedad Geológica de España-Instituto Geológico y Minero de España (SGE-IGME, Madrid, Spain), 587–634.

  • De Vicente, G., Cloetingh, S. A. P. L., Van Wees, J. D., & Cunha, P. P. (2011). Tectonic classification of Cenozoic Iberian foreland basins. Tectonophysics, 502(1), 38–61.

    Article  Google Scholar 

  • De Vicente, G., Vegas, R., Muñoz-Martín, A., van Wees, J. D. A. M., Casas-Sáinz, A., Sopeña, A., Sánchez-Moya, Y., Arche, A., López-Gómez, J., Olaiz, A., Fernández-Lozarno, J. (2009). Oblique strain partitioning and transpression on an inverted rift: The Castilian Branch of the Iberian Chain. Tectonophysics, 470, 224–242.

    Article  Google Scholar 

  • González, A. (1989). Análisis tectosedimentario del Cenozoico del borde SE de la depresión del Ebro (sector bajoaragonés) y cubetas ibéricas marginales. PhD Thesis, Universidad de Zaragoza, 507 p.

  • Guimerà, J. (1984). Palaeogene evolution of deformation in the northeastern Iberian Peninsula. Geological Magazine, 121(5), 413–420.

    Article  Google Scholar 

  • Guimerà, J. (1988). Estudi estructural de l’enllaç entre la Serralada Iberica y la Serralada Costanera Catalana. PhD Thesis, Universitat de Barcelona, 600 p.

  • Guimerà, J., & Alvaro, M. (1990). Structure et évolution de la compression alpine dans la Chaîne Ibérique et la Chaîne côtière catalane (Espagne). Bulletin de la Société Géologique de France, 8, 339–348.

    Article  Google Scholar 

  • Hillier, S., (2003). Quantitative analysis of clay and other minerals in sandstones by Xray powder diffraction (XRPD). In: Worden, R.H., Mored, S. (Eds.), Clay Mineral Cements in Sandstones. International Association of Sedimentologists Special Pub, 34, 213–251.

  • Hrouda, F. (2004). Problems in interpreting AMS parameters in diamagnetic rocks. Geological Society, London, Special Publications, 238, 49–59.

    Article  Google Scholar 

  • Hrouda, F., Jelinek, V., & Zapletal, K. (1997). Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophysical Journal International, 129, 715–719.

    Article  Google Scholar 

  • Ihmlé, P. F., Hirt, A. M., Lowrie, W., & Dietrich, D. (1989). Inverse fabric in deformed limestones of the Morcles Nappe, Switzerland. Geophysical Research Letters, 16, 1383–1386.

    Article  Google Scholar 

  • Issachar, R., Levi, T., Lyakhovsky, V., Marco, S., & Weinberger, R. (2016). Improving the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air. Geochemistry, Geophysics, Geosystems, 17(7), 2940–2950.

    Article  Google Scholar 

  • Jelinek, V. (1978). Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geophysica et Geodetica, 22, 50–62.

    Article  Google Scholar 

  • Levi, T., Weinberger, R., & Marco, S. (2014). Magnetic fabrics induced by dynamic faulting reveal damage zone sizes in soft rocks, Dead Sea basin. Geophysical Journal International, 199, 1214–1229.

    Article  Google Scholar 

  • Liesa, C., Simón, J.L., Casas, A. (2018). Tectónica de inversión en una cadena intraplaca: la Cordillera Ibérica. Revista de la Sociedad Geológica de España, 31 (2), (in press).

  • Lüneburg, C. M., Lampert, S. A., Lebit, H. D., Hirt, A. M., Casey, M., & Lowrie, W. (1999). Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics, 307, 51–74.

    Article  Google Scholar 

  • Marcén, M., Casas, A., Román-Berdiel, T., Griera, A., Santanach, P., Pocoví, A., Gil-Imaz, A., Aldega, L., Izquierdo, E. (2018). Multiple movements recorded in a crustal weakness zone in NE Iberia: the Vallès-Penedès Fault revisited. Journal of Geodynamics , 121, 96–114.

  • Muñoz-Jiménez, A., & Casas-Sainz, A. M. (1997). The Rioja Trough (N Spain): tectosedimentary evolution of a symmetric foreland basin. Basin Research, 9(1), 65–85.

    Article  Google Scholar 

  • Nebot, M., & Guimerà, J. (2016a). Structure of an inverted basin from subsurface and field data. Geologica Acta, 14(2), 155–177.

    Google Scholar 

  • Nebot, M., & Guimerà, J. (2016b). Kinematic evolution of a fold-and-thrust belt developed during basin inversion: the Mesozoic Maestrat basin, E Iberian Chain. Geological Magazine, 155(3), 630–640.

    Article  Google Scholar 

  • Parés, J. M., Van der Pluijm, B., & Dinarés-Turell, J. (1999). Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics, 307, 1–14.

    Article  Google Scholar 

  • Pueyo, E. L., Izquierdo-Llavall, E., Ayala, C., Oliva-Urcia, B., Rubio, F. M., Rodríguez-Pintó, A., Casas, A.M., García-Crespo, J. (2015). Feedback of balanced cross sections and gravity modeling: numerical estimation of horizon mislocations. A case study from the Linking Zone (Northeastern, Spain). Washington: AGU Fall Meeting, abstract id. S21B-2683.

  • Ritcher, C., & Van der Plujim, B. A. (1994). Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Physics of the Earth and Planetary Interiors, 82, 113–123.

    Article  Google Scholar 

  • Salas, R., & Casas, A. (1993). Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228(1–2), 33–55.

    Article  Google Scholar 

  • Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the mesozoic central iberian rift system and its cainozoic inversion (Iberian chain). Peri-Tethys Memoir, 6, 145–185.

    Google Scholar 

  • Simón, J. L. (2004). Superposed buckle folding in the eastern Iberian Chain, Spain. Journal of Structural Geology, 26(8), 1447–1464.

    Article  Google Scholar 

  • Simón, J. L., Arlegui, L. E., Lafuente, P., & Liesa, C. L. (2012). Active extensional faults in the central-eastern Iberian Chain, Spain/Fallas activas extensionales en la Cordillera Ibérica centro-oriental. Journal of Iberian Geology, 38(1), 127–144.

    Article  Google Scholar 

  • Simón Gómez, J.L. (1984). Compresión y distensión alpinas en la Cadena Ibérica Oriental. PhD Thesis, pub. Instituto de Estudios Turolenses (Teruel, Spain), 269 p.

  • Simón, J. L., & Liesa, C. L. (2011). Incremental slip history of a thrust: diverse transport directions and internal folding of the Utrillas thrust sheet (NE Iberian Chain, Spain). Geological Society, London, Special Publications, 349(1), 77–97.

    Article  Google Scholar 

  • Solum, J. G., & van der Pluijm, B. A. (2009). Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior. Tectonophysics, 475(3), 554–562.

    Article  Google Scholar 

  • Soto, R., Casas-Sainz, A. M., & Villalaín, J. J. (2011). Widespread Cretaceous inversion event in northern Spain: evidence from subsurface and palaeomagnetic data. Journal of the Geological Society, 168(4), 899–912.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the careful and constructive revisions from Emilio L. Pueyo Morer and an anonymous reviewer, who helped to improve a former version of the manuscript. The authors are grateful to Jesús Iranzo of the Servicio Provincial de Carreteras de Teruel and the staff from Rover Alcisa S.L. for the facilities given to access the exposure of fault rocks. Authors are grateful to the Servicio General de Apoyo a la Investigación-SAI (Servicio de Preparación de Rocas y Materiales Duros and Servicio de Líquidos Criogénicos) of the University of Zaragoza. This work was financed by project CGL2013-42670-P of the Spanish Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. Casas-Sainz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernet, E., Casas-Sainz, A.M., Román-Berdiel, T. et al. Variable magnetic fabrics under heterogeneous deformation across a shallow fault zone in the Iberian Chain (Monroyo thrust, N Spain). J Iber Geol 45, 111–127 (2019). https://doi.org/10.1007/s41513-018-0090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-018-0090-2

Keywords

Navigation