Skip to main content
Log in

Multidisciplinary approach to constrain kinematics of fault zones at shallow depths: a case study from the Cameros–Demanda thrust (North Spain)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Thrusting at shallow depths often precludes analysis by means of structural indicators effective in other geological contexts (e.g., mylonites, sheath folds, shear bands). In this paper, a combination of techniques (including structural analysis, magnetic methods, as anisotropy of magnetic susceptibility and paleomagnetism, and paleothermometry) is used to define thrusting conditions, deformation, and transport directions in the Cameros–Demanda thrust (North Spain). Three outcrops were analyzed along this intraplate, large-scale major structure having 150 km of outcropping length, 30 km of maximum horizontal displacement, and 5 km of vertical throw. Results obtained by means of the different techniques are compared with data derived from cross sections and stratigraphic analysis. Mixed-layer illite–smectite and vitrinite reflectance indicating deep diagenetic conditions and mature stage of hydrocarbon generation suggests shallow depths during deformation, thus confirming that the protolith for most of the fault rocks is the footwall of the main thrust. Kinematic indicators (foliation, S/C structures, and slickenside striations) indicate altogether a dominant NNW movement of the hanging wall in the western zone and NE in the eastern zone of the thrust, thus implying strain partitioning between different branches of the main thrust. The study of AMS in fault rocks (nearly 400 samples of fault gouge, breccia, and microbreccia) indicates that the strike of magnetic foliation is oblique to the transport direction and that the magnetic lineation parallelizes the projection of the transport direction onto the k max/k int plane in sites with strong shear deformation. Paleomagnetism applied to fault rocks indicates the existence of remagnetizations linked to thrusting, in spite of the shallow depth for deformation, and a strong deformation or scattering of the magnetic remanence vectors in the fault zone. The application of the described techniques and consistency of results indicate that the proposed multidisciplinary approach is useful when dealing with thrusts at shallow crustal levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aldega L, Corrado S, Grasso M, Maniscalco R (2007) Correlation of diagenetic data from organic and inorganic studies in the Apenninic-Maghrebian fold-and-thrust belt: a case study from Eastern Sicily. J Geol 115:335–353

    Article  Google Scholar 

  • Aldega L, Corrado S, Di Paolo L, Somma R, Maniscaldo R, Balestrieri ML (2011) Shallow burial and exhumation of the Peloritani Mountains (NE Sicily, Italy): insight from paleothermal and structural indicators. Geol Soc Am Bull 123:132–149

    Article  Google Scholar 

  • Allmendinger RW, Cardozo NC, Fisher D (2013) Structural geology algorithms: vectors & tensors. Cambridge University Press, Cambridge

    Google Scholar 

  • Alonso JL (1987) Sequences of thrusts and displacement transfer in the superposed duplexes of the Esla Nappe Region (Cantabrian Zone, NW Spain). J Struct Geol 9(8):969–983

    Article  Google Scholar 

  • Alsop GI (2009) Unravelling patterns of folding in high-strain zones. Trab Geol 29:74–77

    Google Scholar 

  • Aranguren A, Cuevas J, Tubía JM (1996) Composite magnetic fabrics from S–C mylonites. J Struct Geol 18:863–869

    Article  Google Scholar 

  • Avouac JP, Tapponnier P, Bai M, You H, Wang G (1993) Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J Geophys Res Solid Earth 98(4):6755–6804 (1978–2012)

    Article  Google Scholar 

  • Bailey RC, Halls H (1978) The method of converging remagnetization circles: extension to in-clude stable endpoints and error analysis. EOS Trans AGU 59(12):1037

    Google Scholar 

  • Balsamo F, Aldega L, De Paola N, Faoro I, Storti F (2014) The signature and mechanics of earthquake ruptures along shallow creeping faults in poorly lithified sediments. Geology 42:435–438

    Article  Google Scholar 

  • Barrier L, Nalpas T, Gapais D, Proust JN, Casas A, Bourquin S (2002) Influence of syntectonic sedimentation on thrust geometry. Field examples from the Iberian Chain (Spain) and analogue modelling. Sed Geol 146(1–2):91–104

    Article  Google Scholar 

  • Bigi S (2006) An example of inversion in a brittle shear zone. J Struct Geol 28(3):431–443

    Article  Google Scholar 

  • Bigi S, Milli S, Corrado S, Casero P, Aldega L, Botti F, Moscatelli M, Stanzione O, Falcini F, Marini M, Cannata D (2009) Stratigraphy, structural setting and burial history of the Messinian Laga Basin in the context of Apennine foreland basin system. J Mediterr Earth Sci 1:61–84

    Google Scholar 

  • Borradaile GJ (1997) Deformation and paleomagnetism. Surv Geophys 18(4):405–436

    Article  Google Scholar 

  • Bustin RM, Barnes MA, Barnes WC (1990) Determining levels of organic diagenesis in sediments and fossil fuels. In: Mcllreath IA, Morrow DW (eds) Diagenesis. Geological Association of Canada, Toronto, pp 205–226

  • Calamita F, Satolli S, Turtu A (2012) Analysis of thrust shear zones in curve-shaped belts; deformation mode and timing of the Olevano-Antrodoco-Sibillini thrust (Central/Northern Apennines of Italy). J Struct Geol 44:179–187

    Article  Google Scholar 

  • Capote R, Muñoz JA, Simón JL, Liesa CL, Arlegui LE (2002) Alpine tectonics I: the Alpine system north of the Betic Cordillera. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society, Bath, pp 367–400

  • Cardozo N, Allmendinger RW (2013) Spherical projections with OSXStereonet. Comput Geosci 51:193–205

    Article  Google Scholar 

  • Caricchi C, Aldega L, Barchi MR, Corrado S, Grigo D, Mirabella F, Zattin M (2015) Exhumation patterns along shallow low-angle normal faults: an example from the Altotiberina active fault system (Northern Apennines, Italy). Terra Nova 27(4):312–321

    Article  Google Scholar 

  • Casas AM, Faccenna C (2001) Tertiary compressional deformation of the Iberian plate. Terra Nova 13:281–288

    Article  Google Scholar 

  • Casas AM, Simón JL, Seron FJ (1992) Stress deflection in a tectonic compressional field; a model for the northwestern Iberian Chain, Spain. J Geophys Res 97(B5):7183–7192

    Article  Google Scholar 

  • Casas AM, Villalaín JJ, Soto R, Gil A, del Río P, Fernández G (2009) Multidisciplinary approach to an extensional syncline model for the Cameros Basin (N Spain). Tectonophysics 470:3–20

    Article  Google Scholar 

  • Casas-Sainz AM (1992) El frente norte de las Sierras de Cameros: estructuras cabalgantes y campo de esfuerzos. Tesis doctoral, Universidad de Zaragoza. Instituto de Estudios Riojanos, Zubía 4, p 220

  • Casas-Sainz AM (1993) Oblique tectonic inversion and basement thrusting in the Cameros Massif (Northern Spain). Geodin Acta 6–3:202–216

    Article  Google Scholar 

  • Casas-Sainz A, Gil-Imaz A (1998) Extensional subsidence, contractional folding and thrust inversion of the Eastern Cameros Massif, northern Spain. Geol Rundsch 86:802–818

    Article  Google Scholar 

  • Casas-Sainz AM, Simón-Gómez JL (1992) Stress-field and thrust kinematics—a model for the tectonic inversion of the Cameros Massif (Spain). J Struct Geol 14(5):521–530

    Article  Google Scholar 

  • Chadima M, Hrouda F (2006) Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Trav Géophys XXVII:20–21

    Google Scholar 

  • Chadima M, Hrouda F (2009) Cureval 8.0: thermomagnetic curve browser for windows. Agico, Inc, Brno

  • Chadima M, Jelinek V (2009) Anisoft 4.2: anisotropy data browser for windows. Agico, Inc, Brno

  • Cogné JP, Perroud H (1985) Strain removal applied to paleomagnetic directions in an orogenic belt: the Permian red slates of the Alpes Maritimes, France. Earth Planet Sci Lett 72(1):125–140

    Article  Google Scholar 

  • Corrado S, Invernizzi C, Aldega L, D’Errico M, Di Leo P, Zattin M (2010) Testing the validity of organic and inorganic thermal indicators in different tectonic settings from continental subduction to collision: the case history of the Calabria–Lucania border (southern Apennines, Italy). J Geol Soc 167:985–999

    Article  Google Scholar 

  • Cortés Gracia AL, Casas Sainz AM (1997) Pliegues flexurales asociados al cabalgamiento de la Sierra de la Demanda en el Cerro Peñalba (La Rioja). Geogaceta 21:85–88

    Google Scholar 

  • Coubal M, Adamovic J, Malek J, Prouza V (2014) Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif. J Geosci 59(3):183–208

    Article  Google Scholar 

  • De Graciansky PC, Dardeau G, Lemoine M, Tricart P (1989) The inverted margin of the French Alps and foreland basin inversion. Geol Soc Lond Spec Publ 44(1):87–104

    Article  Google Scholar 

  • De Vicente G (2004) Estructura alpina del Antepaís Ibérico. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 587–634

    Google Scholar 

  • Debacker TN, Robion P, Sintubin M (2004) The anisotropy of magnetic susceptibility (AMS) in low-grade, cleaved pelitic rocks: influence of cleavage/bedding angle and type and relative orientation of magnetic carriers. Geol Soc Lond Spec Publ 238(1):77–107

    Article  Google Scholar 

  • Debacker TN, Hirt AM, Sintubin M, Robion P (2009) Differences between magnetic and mineral fabrics in low-grade, cleaved siliciclastic pelites; a case study from the Anglo-Brabant deformation belt (Belgium). Tectonophysics 466(1–2):32–46

    Article  Google Scholar 

  • Debacker TN, Sintubin M, Robion P (2010) On the use of magnetic techniques for stratigraphic purposes: examples from the Lower Palaeozoic Anglo-Brabant Deformation Belt (Belgium). Geol Belgica 13:333–350

    Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism. Fundamentals and frontiers. In: Edwards D (ed) Cambridge studies in magnetism. Cambridge University Press, Cambridge, p 253

    Google Scholar 

  • Durand B (1980) Sedimentary organic matter and kerogen. Definition and quantitative importance of kerogen. In: Durand B (ed) Kerogen: insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 13–33

    Google Scholar 

  • Elliot D (1976) The energy balance and deformation mechanisms of thrust sheets. Philos Trans R Soc 283:289–312

    Article  Google Scholar 

  • Erslev EA (1986) Basement balancing of Rocky Mountain foreland uplifts. Geology 14(3):259–262

    Article  Google Scholar 

  • Fauconnier J, Stünitz H, Rosenberg C, Labrousse L, Jolivet L (2014) Étude expérimentale de la fusion partielle sur la rhéologie et la microstructure de la croûte continentale. RST Pau Résum 3(8):26

    Google Scholar 

  • Fernández-Lozano J (2012) Cenozoic deformation of Iberia: a model for intraplate mountain building and basin development based on analogue modelling. Ph.D. thesis, Utrecht Studies in Earth Sciences 013, p 173

  • Fernández-Lozano J, Sokoutis D, Willingshofer E, Cloetingh S, De Vicente G (2011) Cenozoic deformation of Iberia; a model for intraplate mountain building and basin development based on analogue modeling. Tectonics 30(1):TC1001

    Article  Google Scholar 

  • Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond A 217:295–305

    Article  Google Scholar 

  • García-Lasanta C, Oliva-Urcia B, Román-Berdiel T, Casas AM, Pérez-Lorente F (2013) Development of magnetic fabric in sedimentary rocks: insights from early compactional structures (ECS). Geophys J Int 194(1):182–199

    Article  Google Scholar 

  • Grasemann B, Fritz H, Vannay J-C (1999) Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and the extrusion of orogenic wedges. J Struct Geol 21:837–853

    Article  Google Scholar 

  • Guimerà J, Alonso I, Mas J R (1995) Inversion of an extensional-ramp basin by a newly formed thrust: the Cameros basin (N Spain). In: Buchanan JG, Buchanan PG (eds) Basin inversion. Geol Soc Special Publication 88, pp 433–453

  • Guimerà J, Más R, Alonso A (2004) Intraplate deformation in the NW Iberian Chain: mesozoic extension and contractional inversion. J Geol Soc Lond 16:291–303

    Article  Google Scholar 

  • Haerinck T, Wenk HR, Debacker TN, Sintubin M (2015) Preferred mineral orientation of a chloritoid-bearing slate in relation to its magnetic fabric. J Struct Geol 71:125–135

    Article  Google Scholar 

  • Haines SH, van der Pluijm BA (2012) Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. J Struct Geol 43:2–32

    Article  Google Scholar 

  • Hirono T, Lin W, Yeh EC, Soh W, Hashimoto Y, Sone H, Matsubayashi O, Aoike K, Ito H, Kinoshita M, Murayama M, Song SR, Ma K-F, Hung J-H, Wang C-Y, Tsai Y-B (2006) High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault: nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP. Geophys Res Lett 33(15):4,L15303

    Article  Google Scholar 

  • Hirt AM, Gehring A (1991) Thermal alteration of the magnetic mineralogy in ferruginous rocks. J Geophys Res 96:9947–9954

    Article  Google Scholar 

  • Hrouda F, Jélinek V, Zapletal K (1997) Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophys J Int 129:715–719

    Article  Google Scholar 

  • Jacob H, Hiltmann W (1985) Disperse bitumen solids as an indicator for migration and maturity within the scope of prospecting for petroleum and natural gas—a model for NW Germany: DGMK. Forschungsbericht 267:1–54

    Google Scholar 

  • Jagodzinski H (1949) Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Röntgen Interferenzen. Acta Crystallogr A 2:201–207

    Article  Google Scholar 

  • Jelinek V (1977) The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application. Geofyzika, Brno, pp 1–88

    Google Scholar 

  • Jelinek V (1978) Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud Geoph Geod 22:50–62

    Article  Google Scholar 

  • Jelinek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:63–70

    Article  Google Scholar 

  • Jones BF, Galan E (1988) Palygorskite–sepiolite. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Rev in Min 19, Min Soc Amer, Washington, p 698

  • Kirschvink JL (1980) The least-squares line and plane and the analysis of paleomagnetic data. Geophys J R Astr Soc 62:669–718

    Article  Google Scholar 

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa–Iberia–Europe convergence, not Alpine collision. Geology 36(11):839–842

    Article  Google Scholar 

  • Kligfield R, Lowrie W, Hirt A, Siddans AWB (1983) Effect of progressive deformation on remanent magnetization of Permian redbeds from the Alpes Maritimes (France). Tectonophysics 98(1):59–85

    Article  Google Scholar 

  • Lattard D, Engelmann R, Kontny A, Suerzapf U (2006) Curie temperatures of synthetic titanomagnetites in the Fe–Ti–O system: effects of composition, crystal chemistry, and thermomagnetic methods. J Geophys Res 111:B12S28. doi:10.1029/2006JB004591

    Article  Google Scholar 

  • Liesa CL, Simón JL (2009) Evolution of intraplate stress fields under multiple remote compressions: the case of the Iberian Chain (NE Spain). Tectonophysics 474:144–159

    Article  Google Scholar 

  • Lister GS, Snoke AW (1984) S–C mylonites. J Struct Geol 6:617–638

    Article  Google Scholar 

  • Lowrie W, Hirt AM, Kligfield R (1986) Effects of tectonic deformation on the remanent magnetization of rocks. Tectonics 5(5):713–722

    Article  Google Scholar 

  • Lüneburg CM, Lampert SA, Hermann I, Lebit D, Hirt AM, Casey M, Lowrie W (1999) Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics 307:51–74

    Article  Google Scholar 

  • Martín-Hernández F, Ferré EC (2007) Separation of paramagnetic and ferromagnetic anisotropies: a review. J Geophys Res Solid Earth 112(B3):B03105

    Article  Google Scholar 

  • Mas JR, Alonso A, Guimera J (1993) Evolución tectonosedimentaria de una cuenca extensional intraplaca: la cuenca finijurásica-eocretácica de Los Cameros (La Rioja-Soria). Rev Soc Geol Esp 6(3–4):129–144

    Google Scholar 

  • Mata MP, Casas AM, Canals A, Gil A, Pocovi A (2001) Thermal history during Mesozoic extension and tertiary uplift in the Cameros Basin, Northern Spain. Basin Res 13:91–111

    Article  Google Scholar 

  • Mata MP, Villalaín JJ, Casas AM (2006) Mineralogía magnética en rocas mesozoicas remagnetizadas de la Cordillera Ibérica (Sinclinal de Villavelayo-Sierra de la Demanda). MACLA (ISSN:1885-7264) 6, pp 301–303

  • Mertainen S, Karell F (2012) Palaeomagnetic and AMS studies on Satulinmäkiand Koijärvi fault and shear zones. Geol Surv Finland Spec Pap 52:195–226

    Google Scholar 

  • Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford

    Google Scholar 

  • Moreno E, Homberg C, Schnyder J, Person A, du Peloux A, Dock P (2014) Fault imprint in clay units: magnetic fabric, structural and mineralogical signature. EGU General Assembly 2014. Geophysical Research Abstracts 16, EGU2014-15479

  • Muñoz JA, Coney P, McClay K, Evenchick C (1997) Discussion on syntectonic burial and post-tectonic exhumation of the southern Pyrenees foreland fold-thrust belt. J Geol Soc Lond 154:361–365

    Article  Google Scholar 

  • Muñoz-Jiménez A, Casas-Sainz AM (1997) The Rioja Trough (N Spain): tectosedimentary evolution of a symmetric foreland basin. Basin Res 9–1:65–85

    Article  Google Scholar 

  • Nieto F, Mata MP, Bauluz B, Giorgietti G, Árkai P, Peacor DR (2005) Retrograde diagenesis, a widespread process on a regional scale. Clay Miner 40:93–104

    Article  Google Scholar 

  • Oliva-Urcia B, Pueyo EL (2007) Rotational basement kinematics deduced from remagnetized cover rocks (Internal Sierras, southwestern Pyrenees). Tectonics 26:TC4014

    Article  Google Scholar 

  • Oliva-Urcia B, Pueyo EL, Larrasoaña JC (2008) Magnetic reorientation induced by pressure solution: a potential mechanism for orogenic-scale remagnetizations. Earth Planet Sci Lett 265:525–534

    Article  Google Scholar 

  • Oliva-Urcia B, Larrasoaña JC, Pueyo EL, Gil A, Mata P, Parés JM, Schleicher AM, Pueyo Ó (2009) Disentangling magnetic subfabrics and their link to deformation processes in cleaved sedimentary rocks from the Internal Sierras (west central Pyrenees, Spain). J Struct Geol 31(2):163–176

    Article  Google Scholar 

  • Oliva-Urcia B, Casas AM, Pueyo EL, Román-Berdiel T, Geissman JW (2010a) Paleomagnetic evidence for dextral strike-slip motion in the Pyrenees during alpine convergence (Mauléon basin, France). Tectonophysics 494(3):165–179

    Article  Google Scholar 

  • Oliva-Urcia B, Casas AM, Soto R, Villalaín JJ, Kodama K (2010b) A transtensional basin model for the Organyà basin (central southern Pyrenees) based on magnetic fabric and brittle structures. Geophys J Int 184(1):111–130

    Article  Google Scholar 

  • Oliva-Urcia B, Román-Berdiel T, Casas AM, Pueyo EL, Osácar C (2010c) Tertiary compressional overprint on Aptian–Albian extensional magnetic fabrics, North Pyrenean Zone. J Struct Geol 32:362–376

    Article  Google Scholar 

  • Omodeo-Salé S, Salas R, Guimerà J, Ondrak R, Mas R, Arribas J, Suárez-Ruiz I, Martinez L (2015) Subsidence and thermal history of an inverted Late Jurassic-Early Cretaceous extensional basin (Cameros, North-central Spain) affected by very low- to low-grade metamorphism. Basin Research. doi:10.1111/bre.12142

    Google Scholar 

  • Ono T, Hosomi Y, Arai H, Takagi H (2010) Comparison of petrofabrics with composite magnetic fabrics of S–C mylonite in paramagnetic granite. J Struct Geol 32(1):2–14

    Article  Google Scholar 

  • Parés JM, Van der Pluijm BA (2002) Phyllosilicate fabric characterization by low-temperature anisotropy of magnetic susceptibility (LT-AMS). Geophys Res Lett. doi:10.1029/2002GL015459

    Google Scholar 

  • Parés JM, Van Der Pluijm BA, Dinarès-Turell J (1999) Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees northern Spain). Tectonophysics 307:1–14

    Article  Google Scholar 

  • Pérez-Estaún A, Bastida F, Alonso JL, Marquínez J, Aller J, Alvarez-Marrón J, Marcos A, Pulgar JA (1988) A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7(3):517–537

    Article  Google Scholar 

  • Petrovsky E, Kapicka A (2006) On determination of the Curie point from thermomagnetic curves. J Geophys Res 11:B12S27. doi:10.1029/2006JB004507

    Google Scholar 

  • Pichot T, Nalpas T (2009) Influence of synkinematic sedimentation in a thrust system with two decollement levels; analogue modelling. Tectonophysics 473:466–475

    Article  Google Scholar 

  • Pollastro RM (1990) The illite/smectite geothermometer-concepts, methodology and application to basin history and hydrocarbon generation. In: Nuccio BF, Barker CE (eds) Application of thermal maturity studies to energy exploration. Society of Economic Paleontologists and Mineralogists, Rocky Mountains Section, pp 1–18

  • Pomella H (2014) Magnetic fabic of brittle fault rocks. EGU General Assembly 2014. Geophysical Research Abstracts 16, EGU2014-12505

  • Ramsay JG (1967) Folding and fracturing of rocks. McGraw-Hill Companies, New York

    Google Scholar 

  • Ramsay JG (1981) Tectonics of the Helvetic nappes. Geol Soc Lond Spec Publ 9(1):293–309

    Article  Google Scholar 

  • Ramsay JG, Huber MI (1987) The techniques of modern structural geology. Vol 2: folds and fractures. Academic, London, pp 309–700

    Google Scholar 

  • Ramsay JG, Casey M, Kligfield R (1983) Role of shear in development of the Helvetic fold-thrust belt of Switzerland. Geology 11(8):439–442

    Article  Google Scholar 

  • Ritcher C, Van der Pluijm BA (1994) Separation of paramagnetic and ferrimagnetic susceptibilities using low temperature magnetic susceptibilities and comparison with high field methods. Phys Earth Planet Inter 82:113–123

    Article  Google Scholar 

  • Schleicher AM, van der Pluijm BA, Warr LN (2012) Chlorite-smectite clay minerals and fault behavior: new evidence from the San Andreas Fault Observatory at Depth (SAFOD) core. Lithosphere 4(3):209–220

    Article  Google Scholar 

  • Seillé H, Salas R, Pous J, Guimerà J, Gallart J, Torne M, Romero-Ruiz I, Diaz J, Ruiz M, Carbonell R, Mas R (2015) Crustal structure of an intraplate thrust belt: the Iberian Chain revealed by wide-angle seismic, magnetotelluric soundings and gravity data. Tectonophysics 663:339–353

    Article  Google Scholar 

  • Simón JL, Liesa CL (2011) Incremental slip history of a thrust; diverse transport directions and internal folding of the Utrillas thrust sheet (NE Iberian chain, Spain). Geol Soc Lond Spec Publ 349:77–97

    Article  Google Scholar 

  • Smithson SB, Brewer J, Kaufman S, Oliver J, Hurich C (1978) Nature of the Wind River thrust, Wyoming, from COCORP deep-reflection data and from gravity data. Geology 6(11):648–652

    Article  Google Scholar 

  • Snoke AW, Tullis J, Todd VR (eds) (1998) Fault-related rocks: a photographic atlas. Princeton University Press, Princeton

    Google Scholar 

  • Solum JG, van der Pluijm BA (2009) Quantification of fabrics in clay gouge from the Carbonera fault, Sapin and implications for fault behavior. Tectonophysics 475:554–562

    Article  Google Scholar 

  • Stach E, Mackowsky MT, Teichmüller M, Taylor GH, Chandra D, Teichmuller R (1982) Stach’s textbook of coal petrology. Gebrüder Borntraeger, Berlin

  • Steidtmann JR, Middleton LT (1991) Fault chronology and uplift history of the southern Wind River Range, Wyoming: implications for Laramide and post-Laramide deformation in the Rocky Mountain foreland. Geol Soc Am Bull 103(4):472–485

    Article  Google Scholar 

  • Trincal V, Charpentier D, Buatier MD, Grobety B, Lacroix B, Labaume P, Sizun J-P (2014) Quantification of mass transfers and mineralogical transformations in a thrust fault (Monte Perdido thrust unit, southern Pyrenees, Spain). Mar Pet Geol 55:160–175

    Article  Google Scholar 

  • Villalaín JJ, Fernández-González G, Casas AM, Gil-Imaz A (2003) Evidence of a Cretaceous remagnetization in the Cameros Basin (North Spain). Implications for basin geometry. Tectonophysics 377:101–117

    Article  Google Scholar 

  • Vrolijk P, van der Pluijm BA (1999) Clay gouge. J Struct Geol 21(8):1039–1048

    Article  Google Scholar 

  • Yonkee WA, Parry WT, Bruhn RL, Cashman PH (1989) Thermal models of thrust faulting: constraints from fluid-inclusion observations, Willard thrust sheet, Idaho-Utah-Wyoming thrust belt. Geol Soc Am Bull 101:304–313

    Article  Google Scholar 

  • Zheng Y, Davis GA, Wang G, Darby BJ, Hua Y (1998) Major thrust sheet in the Daqing Shan Mountains, Inner Mongolia, China. Sci China (Ser D) 41(5):553–560

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Sylvia Gracia for her help in measuring with the KLY3S susceptibility meter, and Manuel Tricas for thin-section preparation. The authors also acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza (Servicio de Preparación de Rocas y Materiales Duros, and Servicio de Líquidos Criogénicos). This study has been financed by the Research Project UZ2012-CIE-11 of the University of Zaragoza and the Research Projects CGL2013-42670-P and CGL2012-38481 of the MINECO (Ministerio de Economía y Competitividad of Spain). The authors acknowledge the careful and constructive revisions from Manuel Sintubin and Jean Luc Bouchez, who helped to strongly improve a former version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Román-Berdiel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas-Sainz, A.M., Román-Berdiel, T., Oliva-Urcia, B. et al. Multidisciplinary approach to constrain kinematics of fault zones at shallow depths: a case study from the Cameros–Demanda thrust (North Spain). Int J Earth Sci (Geol Rundsch) 106, 1023–1055 (2017). https://doi.org/10.1007/s00531-016-1349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1349-5

Keywords

Navigation