Skip to main content
Log in

Thermodynamic Implications of the Fermionic Mind Hypothesis

  • Ideas and Perspectives
  • Published:
Activitas Nervosa Superior

Abstract

Scientific investigations in the past decades have revealed that the brain’s electric activities correlate with the phenomenology of consciousness. Thus, cognitive science increasingly utilizes physical principles for its analyses. Recently, the Fermionic Mind Hypothesis (FMH) was suggested to explain the hard problem of consciousness. Quantum cognition has considered quantum theory for modeling cognitive phenomena such as memory, language, decision-making, and social interaction for decades. String theory can explain social comparisons and the aptitude for proportionality. The evoked cycle represents an energy-information cycle between the cortex and the limbic brain that is built on the brain’s resting state. Because gravity operates via pressure, time perception informs motivation via emotions. Sensory information, which reflects spatial relationships, is transformed into temporal relationships of memories and decisions. Positive emotions represent an endothermic cycle, which orients toward the future. Negative emotions correspond to information overload; the exothermic process imposes a high energy need on the brain. The energetic consequences of emotions might explain the evolution of intellect as well as mental disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atasoy, S., Deco, G., Kringelbach, M. L., & Pearson, J. (2017). Harmonic brain modes: A unifying framework for linking space and time in brain dynamics. Neuroscientist. https://doi.org/10.1177/1073858417728032.

  • Baars, B. J. (2002). The conscious access hypothesis: Origins and recent evidence. Trends in Cognitive Sciences, 6(1), 47–52.

    PubMed  Google Scholar 

  • Behrens, et al. (2018). What is a cognitive map? Organizing knowledge for flexible behavior. Neuron, 100(2), 490–509.

    PubMed  Google Scholar 

  • Blake, R., & Tong, F. (2008). Scholarpedia, 3(12), 1578.

    Google Scholar 

  • Brembs, B. (2011). Towards a scientific concept of free will as a biological trait: Spontaneous actions and decision-making in invertebrates. Proc. Royal Soc, 278(1707), 930–939.

    Google Scholar 

  • Broekaert, J., Busemeyer, J., and Pothos, E. (2020). The disjunction effect in two-stage simulated gambles. An experimental study and comparison of a heuristic logistic, Markov and quantum-like model. Cogn Psychol, 117:101262.

  • Brunec, I. K., Moscovitch, M., & Barense, M. D. (2018). Boundaries shape cognitive representations of spaces and events. Trends in Cognitive Sciences.

  • Buzsaki, G., Logothetis, N., & Singer, W. (2013). Scaling brain size, keeping timing: Evolutionary preservation of brain rhythms. Neuron., 80(4), 751–764.

    PubMed  PubMed Central  Google Scholar 

  • Darby, K. P., & Sloutsky, V. M. (2015). The cost of learning: Interference effects in memory development. Journal of Experimental Psychology. General, 144(2), 410–431.

    PubMed  PubMed Central  Google Scholar 

  • Deli, E. (2020). Can the FERMIONIC mind hypothesis (FMH) explain consciousness? THE PHYSICS OF SELFHOOD. Activitas Nervosa Superior. https://doi.org/10.1007/s41470-020-00070-4.

  • Deli, E., Peters, J., & Tozzi, A. (2017). Relationships between short and fast brain timescales. Cognitive Neurodynamics, 11, 539.

    PubMed  PubMed Central  Google Scholar 

  • Déli, E., Tozzi, A., & Peters, J. F. (2018). The thermodynamic analysis of neural computation. J. Neurosci. Clin. Res., 3, 1.

    Google Scholar 

  • Deli, E. & Kisvarday, Z. (2020). The thermodynamic brain and the evolution of intellect: The role of mental energy. Cognitive Neurodynamics (In Press).

  • Dennett, D. C. (1991). Consciousness explained. (P. Weiner, Illustrator). Boston: Little, Brown and Co.

  • Dennett, D. C. (2018). Facing up to the hard question of consciousness. Philos. Trans. R. Soc. Series B, Biological Sciences, 373(1755), 20170342.

    Google Scholar 

  • Farah, M. J. (2017). The neuroscience of socioeconomic status: Correlates, causes, and consequences. Neuron., 96(1), 56–71.

    PubMed  Google Scholar 

  • Festinger, L. A. (1954). Theory of social comparison processes. Human Relations, 7, 117–140.

    Google Scholar 

  • Fingelkurts, A. A., & Fingelkurts, A. A. (2014). Present moment, past, and future: mental kaleidoscope. Frontiers in Psychology, 5, 395.

    PubMed  PubMed Central  Google Scholar 

  • Fingelkurts, A. A., & Fingelkurts, A. A. (2015). Operational architectonics methodology for EEG analysis: Theory and results. Neuromethods, 91, 1–59.

  • Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: A process theory. Neural Computation, 29, 1–49.

    PubMed  Google Scholar 

  • Fry, R. (2017). Physical Intelligence and Thermodynamic Computing. Entropy, 19, 107.

    Google Scholar 

  • Greene, R. I., & Aldrich, C. (1976). String theory. Physical Review A, 14, 2363.

    Google Scholar 

  • Guterstam, A., Abdulkarim, Z., & Ehrsson, H. H. (2015). Illusory ownership of an invisible body reduces autonomic and subjective social anxiety responses. Scientific Reports, 5, 9831.

    PubMed  PubMed Central  Google Scholar 

  • Hollis, F., van der Kooij, M. A., Zanoletti, O., Lozano, L., Cantó, C., & Sandi, C. (2015). Mitochondrial function in the brain links anxiety with social subordination. Proceedings of the National Academy of Sciences, 112(50), 15486–15491.

  • Kaczmarek, L. D., Behnke, M., Kashdan, T. B., et al. (2017). Smile intensity in social networking profile photographs is related to greater scientific achievements. The Journal of Positive Psychology, 1–5.

  • Kao, F.-C., Wang, S. R., & Chang, Y. J. (2015). Brainwaves analysis of positive and negative emotions. ISAA, 12, 1263–1266.

    Google Scholar 

  • Keppler, J. (2018). The role of the brain in conscious processes: A new way of looking at the neural correlates of consciousness. Frontiers in Psychology, 9, 1346.

    PubMed  PubMed Central  Google Scholar 

  • Khrennikov, A. (2015a). Quantum-like modeling of cognition. Frontiers of Physics, 3(77), 1–77.

    Google Scholar 

  • Khrennikov, A. (2015b). Quantum-like model of unconscious–conscious dynamics. Frontiers in Psychology, 6, 997. https://doi.org/10.3389/fpsyg.2015.00997.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khrennikov, A., Alodjants, A., Trofimova, A., & Tsarev, D. (2018). On interpretational questions for quantum-like modeling of social lasing. Entropy, 20, 921.

    Google Scholar 

  • Kim, M., & Maguire, E. A. (2019). Can we study 3D grid codes non-invasively in the human brain? Methodological considerations and fMRI findings. Neuroimage., 186, 667–678. https://doi.org/10.1016/j.neuroimage.2018.11.041.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinsbourne, M. (2013). Somatic twist: A model for the evolution of decussation. Neuropsychology., 27(5), 511–515.

    PubMed  Google Scholar 

  • Kleiner, T. M. (2018). Public opinion polarisation and protest behavior. European Journal of Political Research, 57(4), 941–962.

    Google Scholar 

  • Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5, 183–191.

    Google Scholar 

  • Lubashevsky, I. (2018). Psychophysical laws as reflection of mental space properties arXiv:1806.11077v1 [q-bio.NC].

  • Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., et al. (2007). The effects of stress and stress hormones on human cognition. Implications for the field of brain and cognition. Brain and Cognition, 65(3), 209–237.

    PubMed  Google Scholar 

  • Makey, G., Yavuz, Ö., Kesim, D. K. et al. (2018). "Applying the principle of orthogonality of high dimensional random vectors to obtain high-density, large-volume 3D holographic display," in CLEO Pacific Rim Conference 2018, OSA Technical Digest (Optical Society of America) W4G.4.

  • Makey, G., Yavuz, Ö., Kesim, D. K., et al. (2019). Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nature Photonics, 13, 251–256.

    PubMed  PubMed Central  Google Scholar 

  • Mancini, F., Longo, M. R., Kammers, M. P. M., & Haggard, P. (2011). Visual distortion of body size modulates pain perception. Psychol. Sci: APS, 22(3), 325–330.

    Google Scholar 

  • Mateos, D. M., Guevara Erra, R., Wennberg, R., & Perez Velazquez, J. L. (2018). Measures of entropy and complexity in altered states of consciousness. Cognitive Neurodynamics, 12(1), 73–84.

    PubMed  Google Scholar 

  • Mayer-Foulkes, D. (2010). Time is being – General relativity as a theory of time. SSRN Electronic Journal.

  • McCraty, R., & Atkinson, M. (2014). Electrophysiology of intuition: Pre-stimulus responses in group and individual participants using a roulette paradigm. Global Advances in Health and Medicine, 3(2), 16–27.

    PubMed  PubMed Central  Google Scholar 

  • Neupert, S. D., & Allaire, J. C. (2012). I think I can, I think I can: Examining the within-person coupling of control beliefs and cognition in older adults. Psychology and Aging, 2(2), 145–152.

    Google Scholar 

  • Northoff, G., Wainio-Theberge, S., & Evers, K. (2019). Is temporo-spatial dynamics the "common currency" of brain and mind? In quest of "spatiotemporal neuroscience". Physics of Life Reviews. https://doi.org/10.1016/j.plrev.2019.05.002.

  • Oohashi, T., et al. (2000). Inaudible high-frequency sounds affect brain activity: Hypersonic effect. Journal of Neurophysiology, 83, 3548–3558.

    PubMed  Google Scholar 

  • Parmentier, F. B. R., Maybery, M. T., & Elsley, J. V. (2010). The involuntary capture of attention by novel feature pairings: A study of voicelocation integration in auditory sensory memory. Attention, Perception & Psychophysics, 72, 279–284.

    Google Scholar 

  • Peng, L., & Xie, T. (2016). Making similarity versus difference comparison affects perceptions after bicultural exposure and consumer reactions to culturally mixed products.Journal of. CrossCultural Psychology., 47(10), 1380–1394.

    Google Scholar 

  • Perlovsky, L. I. (2016). Physics of the mind. Frontiers in Systems Neuroscience, 10, 84. https://doi.org/10.3389/fnsys.2016.00084.

    Article  PubMed  PubMed Central  Google Scholar 

  • Picard, M., McEwen, B. S., Epel, E. S., & Sandi, C. (2018). An energetic view of stress: Focus on mitochondria. Frontiers in Neuroendocrinology, 49, 72–85

  • Pinto, Y., Neville, D. A., Otten, M., Corballis, P. M., Lamme, V. A., de Haan, E. H., et al. (2017). Split brain: Divided perception but undivided consciousness. Brain.

  • Pothos, E. M., & Busemeyer, J. R. (2009). A quantum probability model explanation for violations of 'l' derationacision theory. Proc. Roy. Soc. B, 276(1665), 2171–2178.

    Google Scholar 

  • Prentner, R. (2019). Consciousness and topologically structured spaces. Consciousness and Cognition, 70, 25–38.

    PubMed  Google Scholar 

  • Rosenzweig, E. S., Brock, J. H., Culbertson, M. D., et al. (2009). Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. The Journal of Comparative Neurology, 513(2), 151–163.

    PubMed  PubMed Central  Google Scholar 

  • Rudd, M., Aaker, J., & Vohs, K. (2012). Awe expands people's perception of time, alters decision making, and enhances well-being. Psychological Science, 23(10), 1130–1136.

    PubMed  Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (2017). origin of neural firing and synthesis in making comparisons. European Journal of Pure and Applied Mathematics, 10(4), 602–613.

    Google Scholar 

  • Sánchez-Rodríguez, A., Willis, G. B., & Rodríguez-Bailón, R. (2019). Economic and social distance: Perceived income inequality negatively predicts an interdependent self-construal. International Journal of Psychology, 54(1), 117–125.

    PubMed  Google Scholar 

  • Spreng, R. N. (2013). Examining the role of memory in social cognition. Frontiers in Psychology, 4, 437. https://doi.org/10.3389/fpsyg.2013.00437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanghellini, G., Ballerini, M., Presenza, S., Mancini, M., Northoff, G., & Cutting, J. (2016). Abnormal time experiences in major depression. An empirical qualitative study. Psychopathology. https://doi.org/10.1159/000452892.

  • Surov, Ilya A. quantum Cognitive Triad. Semantic geometry of context representation arXiv:2002.11195v1 [q-bio.NC] 2020.

  • Surov, I. A., Pilkevich, S. V., Alodjants, A. P., & Khmelevsky, S. V. (2019). Quantum phase stability in human cognition. Frontiers in Psychology, 10(April), 1–6.

    Google Scholar 

  • Tavares, R. M., et al. (2015). A map for social navigation in the human brain. Neuron, 87, 231–243. https://doi.org/10.1016/j.neuron.2015.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tipples, J. (2018). Increased Frustration Predicts the Experience of Time Slowing-Down: Evidence from an Experience Sampling Study. 6:2.

  • Tozzi, A. (2018). Einstein and the physics of the mind: Comment Felix Schoeller et al. Phy life rev. 2018 https://doi.org/10.1016/j.plrev.2018.01.009.

  • Tozzi, A., Peters, J. F., Fingelkurts, A. A., Fingelkurts, A. A., & Marijuán, P. C. (2017). Topodynamics of metastable brains. Physics of Life Reviews. https://doi.org/10.1016/j.plrev.2017.03.001.

  • Trevisiol, et al. (2017). Monitoring ATP dynamics in electrically active white matter tracts. eLife, 6, e24241.

    PubMed  PubMed Central  Google Scholar 

  • Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M-B., & Moser, E. I. (2018). Integrating time from experience in the lateral entorhinal cortex. Nature, 561(7721), 57–62.

  • Weiss, D. J. (2006). Analysis of variance and functional measurement: A practical guide. New York: Oxford University Press.

    Google Scholar 

  • Wendt, A. (2015). Quantum mind and social science. Unifying physical and social ontology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wissner-Gross, A. D., & Freer, C. E. (2013). Causal entropic forces. Physical Review Letters, 110, 168702. https://doi.org/10.1103/PhysRevLett.110.168702.

    Article  PubMed  Google Scholar 

  • Xu, A. J., & Schwarz, N. (2018). How one thing leads to another: Spillover effects of behavioral mind-sets. Current Directions in Psychological Science, 27(1), 51–55.

    Google Scholar 

  • Xu, A. J., Schwarz Tsao, A., et al. (2018). Integrating time from experience in the lateral entorhinal cortex. Nature., 561, 57–62.

    Google Scholar 

  • Yamada, Y., & Kawabe, T. (2011). Emotion colors time perception unconsciously. Consciousness and Cognition, 20(4), 1835–1841.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Deli.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deli, E. Thermodynamic Implications of the Fermionic Mind Hypothesis. Act Nerv Super 62, 96–103 (2020). https://doi.org/10.1007/s41470-020-00074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41470-020-00074-0

Keywords

Navigation