Skip to main content
Log in

Spherical coordinates from persistent cohomology

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

We describe a method to obtain spherical parameterizations of arbitrary data through the use of persistent cohomology and variational optimization. We begin by computing the second-degree persistent cohomology of the filtered Vietoris-Rips (VR) complex of a data set X and extract a cocycle \(\alpha \) from any significant feature. From this cocycle, we define an associated map \(\alpha : VR(X) \rightarrow S^2\) and use this map as an infeasible initialization for a variational model, which we show has a unique solution (up to rigid motion). We then employ an alternating gradient descent/Möbius transformation update method to solve the problem and generate a more suitable, i.e., smoother, representative of the homotopy class of \(\alpha \), preserving the relevant topological feature. Finally, we conduct numerical experiments on both synthetic and real-world data sets to show the efficacy of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baden, A., Crane, K., Kazhdan, M.: Möbius registration. In: Computer Graphics Forum, vol. 37, pp. 211–220. Wiley Online Library (2018)

  • Balasubramanian, M., Schwartz, E.L.: The isomap algorithm and topological stability. Science 295(5552), 7–7 (2002)

    Article  PubMed  Google Scholar 

  • Bauer, U.: Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl. Computat. Topol. (2021). https://doi.org/10.1007/s41468-021-00071-5

    Article  MathSciNet  Google Scholar 

  • Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computat. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  • Bonnabel, S.: Stochastic gradient descent on riemannian manifolds. IEEE Trans. Autom. Contr. 58(9), 2217–2229 (2013)

    Article  MathSciNet  Google Scholar 

  • Carlsson, G.: Topology and data. Bull. Am. Math. Soc. (N.S.) 46(2), 255–308 (2009). https://doi.org/10.1090/S0273-0979-09-01249-X

  • Cayton, L.: Algorithms for manifold learning. Univ. Californ. San Diego Tech. Rep. 12(1), 1–17 (2005)

    Google Scholar 

  • Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics, p. 120. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-319-42545-0

  • Chen, C., Ni, X., Bai, Q., Wang, Y.: A topological regularizer for classifiers via persistent homology. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2573–2582. PMLR (2019)

  • Connor, M., Rozell, C.: Representing closed transformation paths in encoded network latent space. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3666–3675 (2020)

  • Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., Tomczak, J.M.: Hyperspherical variational auto-encoders. arXiv preprint arXiv:1804.00891 (2018)

  • De Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discr. Computat. Geom. 45(4), 737–759 (2011)

    Article  MathSciNet  Google Scholar 

  • Dubrovina, A., Guibas, L., Su, H.: CS468: Machine Learning for 3D Data. INRIA Sophai Antipolis (2010)

  • Falorsi, L., De Haan, P., Davidson, T.R., De Cao, N., Weiler, M., Forré, P., Cohen, T.S.: Explorations in homeomorphic variational auto-encoding. arXiv preprint arXiv:1807.04689 (2018)

  • Finkelstein, A., Derdikman, D., Rubin, A., Foerster, J.N., Las, L., Ulanovsky, N.: Three-dimensional head-direction coding in the bat brain. Nature 517(7533), 159–164 (2015). https://doi.org/10.1038/nature14031

    Article  ADS  PubMed  CAS  Google Scholar 

  • Giusti, C., Pastalkova, E., Curto, C., Itskov, V.: Clique topology reveals intrinsic geometric structure in neural correlations. Proc. National Acad. Sci. United States Am. 112, 102458 (2015). https://doi.org/10.1073/pnas.1506407112

    Article  MathSciNet  CAS  Google Scholar 

  • Gu, X.D., Yau, S.-T.: Computational Conformal Geometry vol. 1, pp. 127–137. International Press, Somerville, MA (2008)

  • Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 127–137 (2003)

  • Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag. 23(8), 949–958 (2004)

    Article  Google Scholar 

  • Henselman, G., Ghrist, R.: Matroid filtrations and computational persistent homology. ArXiv e-prints (2016) arXiv:1606.00199

  • Kapur, M.: Param tools. Github (2020)

  • Lam, K.C., Lui, L.M.: Landmark-and intensity-based registration with large deformations via quasi-conformal maps. SIAM J. Imag. Sci. 7(4), 2364–2392 (2014)

    Article  MathSciNet  Google Scholar 

  • Lhuilier, A.: Maemoire sur la polyaedromaetrie, contenant une daemonstration directe du thaeoraeme d’euler sur les polyaedres, et un examen de diverses exceptions auxquelles ce thaeoraeme est assujetti (extrait par m. gergonne). Annales de mathaematiques pures et appliquaees par Gergonne III (1812)

  • McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  • Moor, M., Horn, M., Rieck, B., Borgwardt, K.: Topological autoencoders. In: International Conference on Machine Learning, pp. 7045–7054. PMLR (2020)

  • Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-100). Report (1996)

  • Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Computat. Geom. 39, 419–441 (2008)

    Article  MathSciNet  Google Scholar 

  • O’Keefe, J.: Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51(1), 78–109 (1976). https://doi.org/10.1016/0014-4886(76)90055-8

    Article  PubMed  Google Scholar 

  • Perea, J.A.: Multiscale projective coordinates via persistent cohomology of sparse filtrations. Discrete Comput. Geom. 59(1), 175–225 (2018). https://doi.org/10.1007/s00454-017-9927-2

    Article  MathSciNet  Google Scholar 

  • Perea, J.A.: Sparse circular coordinates via principal \(\mathbb{Z} \)-bundles. In: Baas, N.A., Carlsson, G.E., Quick, G., Szymik, M., Thaule, M. (eds.) Topolog. Data Anal., pp. 435–458. Springer, Cham (2020)

    Chapter  Google Scholar 

  • Pomerleau, F., Liu, M., Colas, F., Siegwart, R.: Challenging data sets for point cloud registration algorithms. Int. J. Robot. Res. 31(14), 1705–1711 (2012)

    Article  Google Scholar 

  • Rey, L.A.P.: Disentanglement with hyperspherical latent spaces using diffusion variational autoencoders. Proc. Mach. Learn. Res. 1, 1–4 (2019)

    Google Scholar 

  • Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  ADS  PubMed  CAS  Google Scholar 

  • Rybakken, E., Baas, N., Dunn, B.: Decoding of neural data using cohomological feature extraction. Neural Computation 31(1), 68–93 (2019) https://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/31/1/68/1049676/neco_a_01150.pdfhttps://direct.mit.edu/neco/article-pdf/31/1/68/1049676/neco_a_01150.pdf. https://doi.org/10.1162/neco_a_01150

  • Schonsheck, S.C., Chen, J., Lai, R.: Chart auto-encoders for manifold structured data. arXiv preprint arXiv:1912.10094 (2019)

  • Schonsheck, S.C., Mahan, S., Klock, T., Cloninger, T., Lai, R.: Semi-supervised manifold learning with complexity decoupled chart autoencoders. arXiv preprint arXiv:2208.10570 (2022)

  • Stanley, R.P.: The Fibonacci lattice. Fibon. Quart 13(3), 215–232 (1975)

    MathSciNet  Google Scholar 

  • Tralie, C., Saul, N., Bar-On, R.: Ripser.py: A lean persistent homology library for python. The Journal of Open Source Software 3(29), 925 (2018). https://doi.org/10.21105/joss.00925

  • Tsai, F.S., Chan, K.L.: Dimensionality reduction techniques for data exploration. In: 2007 6th International Conference on Information, Communications & Signal Processing, pp. 1–5. IEEE (2007)

  • Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11), 1025 (2008)

    Google Scholar 

  • Weisstein, E.W.: Spherical trigonometry. From MathWorld–A Wolfram Web Ressource. Available from http://mathworld.wolfram.com/SphericalTrigonometry.html (2008)

  • Wikipedia: Young-Fibonacci lattice — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Young%E2%80%93Fibonacci%20lattice &oldid=1122161521. [Online; accessed 29-March-2023] (2023)

  • Yoon, H.R., Ghrist, R., Giusti, C.: Persistent extension and analogous bars: Data-induced relations between persistence barcodes (2022). https://doi.org/10.48550/ARXIV.2201.05190

  • Zeng, W., Samaras, D., Gu, D.: Ricci flow for 3D shape analysis. IEEE Trans. Patt. Anal. Mach. Intell. 32(4), 662–677 (2010)

    Article  Google Scholar 

  • Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005). https://doi.org/10.1007/s00454-004-1146-y

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Chad Giusti for many helpful discussions, and Jose Perea for an enlightening conversation about the paper. We are also grateful to several anonymous referees, whose detailed and thoughtful feedback led to significant improvements in the clarity and cohesiveness of the paper. NC Schonsheck’s work is supported by the Air Force Office of Scientific Research under award number FA9550-21-1-0266 and SC Schonsheck’s work is supported by the US National Science Foundation grant DMS-1912747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas C. Schonsheck.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Algorithm

Appendix A: Algorithm

Algorithm 1
figure a

Energy Minimization

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schonsheck, N.C., Schonsheck, S.C. Spherical coordinates from persistent cohomology. J Appl. and Comput. Topology 8, 149–173 (2024). https://doi.org/10.1007/s41468-023-00141-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-023-00141-w

Keywords

Navigation