Skip to main content
Log in

Abstract

We study the persistent homology of an Erdős–Rényi random clique complex filtration on n vertices. Here, each edge e appears independently at a uniform random time \(p_e \in [0,1]\), and the persistence of a cycle \(\sigma \) is defined as \(p_2(\sigma ) / p_1(\sigma )\), where \(p_1(\sigma )\) and \(p_2(\sigma )\) are the birth and death times of \(\sigma \). We show that if \(k \ge 1\) is fixed, then with high probability the maximal persistence of a k-cycle is of order \(n^{1/k(k+1)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  • Bauer, U.: Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl. Comput. Topol. 5(3), 391–423 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey. J. Appl. Comput. Topol. 1(3–4), 331–364 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski, O., Kahle, M., Skraba, P.: Maximally persistent cycles in random geometric complexes. Ann. Appl. Probab. 27(4), 2032–2060 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski, O., Skraba, P.: On the Universality of Random Persistence Diagrams. (submitted), arXiv:2207.03926, (2022)

  • Brennan, M., Bresler, G., Nagaraj, D.: Phase transitions for detecting latent geometry in random graphs. Probab. Theory Related Fields 178(3–4), 1215–1289 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Bubeck, S., Ding, J., Eldan, R., Rácz, M.Z.: Testing for high-dimensional geometry in random graphs. Random Struct. Algorithms 49(3), 503–532 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Giusti, C., Pastalkova, E., Curto, C., Itskov, V.: Clique topology reveals intrinsic geometric structure in neural correlations. Proc. Natl. Acad. Sci. 112(44), 13455–13460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman, C., Kahle, M., Paquette, E.: Spectral gaps of random graphs and applications. Int. Math. Res. Not. IMRN 2021(11), 8353–8404 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Kahle, M.: Topology of random clique complexes. Discrete Math. 309(6), 1658–1671 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kahle, M.: Sharp vanishing thresholds for cohomology of random flag complexes. Ann. Math. 179(3), 1085–1107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Kahle, M.: Random simplicial complexes. In Handbook of Discrete and Computational Geometry, pp. 581–603. Chapman and Hall/CRC, (2017)

  • Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Malen, G.: Collapsibility of random clique complexes. arXiv:1903.05055, (2019)

  • Newman, A.: One-sided sharp thresholds for homology of random flag complexes. arXiv:2108.04299, (2021)

  • Paquette, E., Werf, A.V.: Random geometric graphs and the spherical Wishart matrix. arXiv:2110.10785, (2021)

Download references

Acknowledgements

We thank both anonymous referees for their corrections and helpful comments. MK also thanks Greg Malen and Andrew Newman for several helpful conversations.

Funding

Both authors gratefully acknowledge the support of NSF-DMS #2005630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Kahle.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ababneh, A., Kahle, M. Maximal persistence in random clique complexes. J Appl. and Comput. Topology (2023). https://doi.org/10.1007/s41468-023-00131-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41468-023-00131-y

Keywords

Mathematics Subject Classification

Navigation