Skip to main content
Log in

tDCS-Induced Effects on Executive Functioning and Their Cognitive Mechanisms: a Review

  • Original Article
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

Executive functions define a set of general-purpose control mechanisms that modulate the operation of cognitive subprocesses and regulate the dynamics of human cognition. Core components of executive functioning are shifting (i.e., task switching, dual tasking), updating, and inhibition. These components are associated with activation in the prefrontal cortex in brain imaging studies. The present review investigates whether different levels of prefrontal activation are related with performance modulations in executive functions. Therefore, we summarize studies that have used a noninvasive brain stimulation technique, namely transcranial direct current stimulation (tDCS), during performance in executive tasks. This summary demonstrates that tDCS leads to modulations of all core components of executive functioning. Furthermore, the present review makes assumptions about the cognitive mechanisms underlying these tDCS-related modulations. The current state of the literature allows generating such assumptions at least for the components dual tasking and updating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahissar, M., Laiwand, R., & Hochstein, S. (2001). Attentional demands following perceptual skill training. Psychological Science, 12(1), 56–62.

    Article  PubMed  Google Scholar 

  • Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: exploring the dynamic control of task. In C. Umilta & M. Moscovitch (Eds.), Conscious and nonconscious information processing: attention and performance XV (pp. 421–452). Cambridge: MIT Press.

    Google Scholar 

  • Altmann, E. M. (2004). The preparation effect in task switching: carryover of SOA. Memory & Cognition, 32(1), 153–163.

    Article  Google Scholar 

  • Andrews, S. C., Hoy, K. E., Enticott, P. G., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimulation, 4(2), 84–89.

    Article  PubMed  Google Scholar 

  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (1986). Working memory. New York: Clarendon Press/Oxford University Press.

  • Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology A, 49, 5–28.

    Article  Google Scholar 

  • Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.

    Article  PubMed  Google Scholar 

  • Band, G. P. H., & van Nes, F. T. (2006). Reconfiguration and the bottleneck: does task switching affect the refractory period effect? European Journal of Cognitive Psychology, 18(4), 593–623.

    Article  Google Scholar 

  • Beeli, G., Casutt, G., Baumgartner, T., & Jancke, L. (2008). Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions, 4, 33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berryhill, M. E., & Hughes, H. C. (2009). On the minimization of task switch costs following long-term training. Attention, Perception & Psychophysics, 71(3), 503–514.

    Article  Google Scholar 

  • Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., et al. (2016). Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimulation, 9, 641–661.

    Article  PubMed  Google Scholar 

  • Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting Stroop: an interference task specialized for functional neuroimaging—validation study with functional MRI. Human Brain Mapping, 6(4), 270–282.

    Article  PubMed  Google Scholar 

  • Cepeda, N. J., Kramer, A. F., & Gonzalez de Sather, J. C. (2001). Changes in executive control across the life span: examination of task-switching performance. Developmental Psychology, 37(5), 715–730.

    Article  PubMed  Google Scholar 

  • Damos, D. L., & Wickens, C. D. (1980). The identification and transfer of timesharing skills. Acta Psychologica, 46(1), 15–39.

    Article  Google Scholar 

  • De Jong, R. (1995). The role of preparation in overlapping-task performance. The Quarterly Journal of Experimental Psychology Section A, 48(1), 2–25.

    Article  Google Scholar 

  • Ditye, T., Jacobson, L., Walsh, V., & Lavidor, M. (2012). Modulating behavioral inhibition by tDCS combined with cognitive training. Experimental Brain Research, 219(3), 363–368.

    Article  PubMed  Google Scholar 

  • Dockery, C. A., Hueckel-Weng, R., Birbaumer, N., & Plewnia, C. (2009). Enhancement of planning ability by transcranial direct current stimulation. Journal of Neuroscience, 29(22), 7271–7277.

    Article  PubMed  Google Scholar 

  • Dulaney, C. L., & Rogers, W. A. (1994). Mechanisms underlying reduction in Stroop interference with practice for young and old adults. Journal of Experimental Psychology. Learning, Memory, and Cognition, 20(2), 470–484.

    Article  PubMed  Google Scholar 

  • Dux, P. E., Tombu, M. N., Harrison, S., Rogers, B. P., Tong, F., & Marois, R. (2009). Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex. Neuron, 63(1), 127–138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis, N. R., Woodley-Zanthos, P., Dulaney, C. L., & Palmer, R. L. (1989). Automatic-effortful processing and cognitive inertia in persons with mental retardation. American Journal of Mental Retardation, 93(4), 412–423.

    PubMed  Google Scholar 

  • Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: mechanisms of active maintenance and executive control (pp. 102–134). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2013). Boosting brain functions: improving executive functions with behavioral training, neurostimulation, and neurofeedback. International Journal of Psychophysiology, 88(1), 1–16.

    Article  PubMed  Google Scholar 

  • Ericcson, K. A., Chase, W. G., & Faloon, S. (1980). Acquisition of a memory skill. Science, 208(4448), 1181–1182.

    Article  PubMed  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149.

    Article  Google Scholar 

  • Filmer, H. L., Mattingley, J. B., & Dux, P. E. (2013). Improved multitasking following prefrontal tDCS. Cortex, 49(10), 2845–2852.

    Article  PubMed  Google Scholar 

  • Floel, A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage, 85(Pt 3), 934–947.

    Article  PubMed  Google Scholar 

  • Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., et al. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166(1), 23–30.

    Article  PubMed  Google Scholar 

  • Funahashi, S. (2001). Neuronal mechanisms of executive control by the prefrontal cortex. Neuroscience Research, 39(2), 147–165.

    Article  PubMed  Google Scholar 

  • Funahashi, S., & Andreau, J. M. (2013). Prefrontal cortex and neural mechanisms of executive function. Journal of Physiology, Paris, 107(6), 471–482.

    Article  PubMed  Google Scholar 

  • Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845–850.

    Article  PubMed  Google Scholar 

  • Gill, J., Shah-Basak, P. P., & Hamilton, R. (2015). It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimulation, 8(2), 253–259.

    Article  PubMed  Google Scholar 

  • Hallett, P. E. (1978). Primary and secondary saccades to goals defined by instructions. Vision Research, 18(10), 1279–1296.

    Article  PubMed  Google Scholar 

  • Hartley, A. A., & Little, D. M. (1999). Age-related differences and similarities in dual-task interference. Journal of Experimental Psychology. General, 128(4), 416–449.

    Article  PubMed  Google Scholar 

  • Hendrich, E., Strobach, T., Buss, M., Muller, H. J., & Schubert, T. (2012). Temporal-order judgment of visual and auditory stimuli: modulations in situations with and without stimulus discrimination. Frontiers in Integrative Neuroscience, 6, 63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirst, W., Spelke, E. S., Reaves, C. C., Caharack, G., & Neisser, U. (1980). Dividing attention without alternation or automaticity. Journal of Experimental Psychology. General, 109(1), 98–117.

    Article  Google Scholar 

  • Hoffmann, J., Kiesel, A., & Sebald, A. (2003). Task switches under Go/NoGo conditions and the decomposition of switch costs. European Journal of Cognitive Psychology, 15(1), 101–128.

    Article  Google Scholar 

  • Hogeveen, J., Grafman, J., Aboseria, M., David, A., Bikson, M., & Hauner, K. K. (2016). Effects of high-definition and conventional tDCS on response inhibition. Brain Stimulation. doi:10.1016/j.brs.2016.04.015.

    PubMed  Google Scholar 

  • Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15.

    Article  PubMed  Google Scholar 

  • Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136(2), 189–202.

    Article  PubMed  Google Scholar 

  • Hoy, K. E., Emonson, M. R., Arnold, S. L., Thomson, R. H., Daskalakis, Z. J., & Fitzgerald, P. B. (2013). Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia, 51(9), 1777–1784.

    Article  PubMed  Google Scholar 

  • Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J., et al. (2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. NeuroImage, 56(4), 2249–2257.

    Article  PubMed  Google Scholar 

  • Hsu, W. Y., Zanto, T. P., Anguera, J. A., Lin, Y. Y., & Gazzaley, A. (2015). Delayed enhancement of multitasking performance: effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex, 69, 175–185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson, L., Javitt, D. C., & Lavidor, M. (2011). Activation of inhibition: diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of Cognitive Neuroscience, 23(11), 3380–3387.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeon, S. Y., & Han, S. J. (2012). Improvement of the working memory and naming by transcranial direct current stimulation. Annals of Rehabilitation Medicine, 36(5), 585–595.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 29–61). New York: Academic.

    Google Scholar 

  • Kamienkowski, J. E., Pashler, H., Dehaene, S., & Sigman, M. (2011). Effects of practice on task architecture: combined evidence from interference experiments and random-walk models of decision making. Cognition, 119(1), 81–95.

    Article  PubMed  Google Scholar 

  • Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990.

    Article  PubMed  Google Scholar 

  • Kiesel, A., Wendt, M., & Peters, A. (2007). Task switching: on the origin of response congruency effects. Psychological Research, 71(2), 117–125.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., et al. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186.

    Article  PubMed  Google Scholar 

  • Koch, I., & Allport, A. (2006). Cue-based preparation and stimulus-based priming of tasks in task switching. Memory & Cognition, 34(2), 433–444.

    Article  Google Scholar 

  • Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235.

    Article  PubMed  Google Scholar 

  • Kramer, A. F., Larish, J. F., & Strayer, D. L. (1995). Training for attentional control in dual task settings: a comparison of young and old adults. Journal of Experimental Psychology: Applied, 1(1), 50–76.

    Google Scholar 

  • Kray, J., & Eppinger, B. (2006). Effects of associative learning on age differences in task-set switching. Acta Psychologica, 123(3), 187–203.

    Article  PubMed  Google Scholar 

  • Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and Aging, 15(1), 126–147.

    Article  PubMed  Google Scholar 

  • Kuo, M. F., & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience, 43(3), 192–199.

    Article  PubMed  Google Scholar 

  • Kwon, Y. H., & Kwon, J. W. (2013). Is transcranial direct current stimulation a potential method for improving response inhibition? Neural Regeneration Research, 8(11), 1048–1054.

    PubMed  PubMed Central  Google Scholar 

  • Kwon, J. W., Nam, S. H., Lee, N. K., Son, S. M., Choi, Y. W., & Kim, C. S. (2013). The effect of transcranial direct current stimulation on the motor suppression in stop-signal task. NeuroRehabilitation, 32(1), 191–196.

    PubMed  Google Scholar 

  • Leite, J., Carvalho, S., Fregni, F., & Goncalves, O. F. (2011). Task-specific effects of tDCS-induced cortical excitability changes on cognitive and motor sequence set shifting performance. PLoS ONE, 6(9), e24140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leite, J., Carvalho, S., Fregni, F., Boggio, P. S., & Goncalves, O. F. (2013). The effects of cross-hemispheric dorsolateral prefrontal cortex transcranial direct current stimulation (tDCS) on task switching. Brain Stimulation, 6(4), 660–667.

    Article  PubMed  Google Scholar 

  • Lien, M. C., Schweickert, R., & Proctor, R. W. (2003). Task switching and response correspondence in the psychological refractory period paradigm. Journal of Experimental Psychology. Human Perception and Performance, 29(3), 692–712.

    Article  PubMed  Google Scholar 

  • Liepelt, R., Strobach, T., Frensch, P., & Schubert, T. (2011). Improved intertask coordination after extensive dual-task practice. The Quarterly Journal of Experimental Psychology (Hove), 64(7), 1251–1272.

    Article  Google Scholar 

  • Loftus, A. M., Yalcin, O., Baughman, F. D., Vanman, E. J., & Hagger, M. S. (2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5(5), e00332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492–527.

    Article  Google Scholar 

  • Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878.

    Article  PubMed  Google Scholar 

  • Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacology Biochemistry and Behavior, 123, 45–54.

    Article  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109(2), 163–203.

    Article  PubMed  Google Scholar 

  • Maquestiaux, F., Laguë-Beauvais, M., Bherer, L., & Ruthruff, E. (2008). Bypassing the central bottleneck after single-task practice in the psychological refractory period paradigm: evidence for task automatization and greedy resource recruitment. Memory & Cognition, 36(7), 1262–1282.

    Article  Google Scholar 

  • Martin, D. M., Liu, R., Alonzo, A., Green, M., Player, M. J., Sachdev, P., et al. (2013). Can transcranial direct current stimulation enhance outcomes from cognitive training? A randomized controlled trial in healthy participants. International Journal of Neuropsychopharmacology, 16(9), 1927–1936.

    Article  PubMed  Google Scholar 

  • Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: the role of backward inhibition. Journal of Experimental Psychology: General, 129(1), 4–26.

    Article  Google Scholar 

  • Meinzer, M., Antonenko, D., Lindenberg, R., Hetzer, S., Ulm, L., Avirame, K., et al. (2012). Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. Journal of Neuroscience, 32(5), 1859–1866.

    Article  PubMed  Google Scholar 

  • Meiron, O., & Lavidor, M. (2013). Unilateral prefrontal direct current stimulation effects are modulated by working memory load and gender. Brain Stimulation, 6(3), 440–447.

    Article  PubMed  Google Scholar 

  • Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: part 2. Accounts of psychological refractory-period phenomena. Psychological Review, 104(4), 749–791.

    Article  Google Scholar 

  • Minear, M., & Shah, P. (2008). Training and transfer effects in task switching. Memory & Cognition, 36(8), 1470–1483.

    Article  Google Scholar 

  • Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: four general conclusions. Current Directions in Psychological Science, 21(1), 8–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100.

    Article  PubMed  Google Scholar 

  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.

    Article  PubMed  Google Scholar 

  • Morris, N., & Jones, D. M. (1990). Memory updating in working memory: the role of the central executive. British Journal of Psychology, 81(2), 111–121.

    Article  Google Scholar 

  • Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241–268.

    Article  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(Pt 3), 633–639.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2011). Transcranial direct current stimulation—update 2011. Restorative Neurology and Neuroscience, 29(6), 463–492.

    PubMed  Google Scholar 

  • Nitsche, M. A., Liebetanz, D., Antal, A., Lang, N., Tergau, F., & Paulus, W. (2003). Modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects. Supplements to Clinical Neurophysiology, 56, 255–276.

    Article  PubMed  Google Scholar 

  • Norman, D., & Shallice, T. (1986). Attention to action: willed and automatic control of behavior. In R. Davidson, R. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation: advances in research and theory IV. New York: Plenum.

    Google Scholar 

  • Oberauer, K., & Kliegl, R. (2004). Simultaneous cognitive operations in working memory after dual-task practice. Journal of Experimental Psychology. Human Perception and Performance, 30(4), 689–707.

    Article  PubMed  Google Scholar 

  • Ohn, S. H., Park, C. I., Yoo, W. K., Ko, M. H., Choi, K. P., Kim, G. M., et al. (2008). Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport, 19(1), 43–47.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1984). Processing stages in overlapping tasks: evidence for a central bottleneck. Journal of Experimental Psychology. Human Perception and Performance, 10(3), 358–377.

    Article  PubMed  Google Scholar 

  • Pashler, H. (1994). Dual-task interference in simple tasks: data and theory. Psychological Bulletin, 116(2), 220–244.

    Article  PubMed  Google Scholar 

  • Pashler, H., & Baylis, G. C. (1991). Procedural learning: I. Locus of practice effects in speeded choice tasks. Journal of Experimental Psychology. Learning, Memory, and Cognition, 17(1), 20–32.

    Article  Google Scholar 

  • Plewnia, C., Zwissler, B., Langst, I., Maurer, B., Giel, K., & Kruger, R. (2013). Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex, 49(7), 1801–1807.

    Article  PubMed  Google Scholar 

  • Richmond, L. L., Wolk, D., Chein, J., & Olson, I. R. (2014). Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes. Journal of Cognitive Neuroscience, 26(11), 2443–2454.

    Article  PubMed  Google Scholar 

  • Rogers, W. A., & Fisk, A. D. (1991). Are age differences in consistent-mapping visual search due to feature learning or attention training? Psychology and Aging, 6(4), 542–550.

    Article  PubMed  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207–231.

    Article  Google Scholar 

  • Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763–797.

    PubMed  Google Scholar 

  • Ruthruff, E., Van Selst, M., Johnston, J. C., & Remington, R. (2006). How does practice reduce dual-task interference: integration, automatization, or just stage-shortening? Psychological Research, 70(2), 125–142.

    Article  PubMed  Google Scholar 

  • Sangals, J., Wilwer, M., & Sommer, W. (2007). Localizing practice effects in dual-task performance. The Quarterly Journal of Experimental Psychology, 60(6), 860–876.

    Article  PubMed  Google Scholar 

  • Sarkis, R. A., Kaur, N., & Camprodon, J. A. (2014). Transcranial direct current stimulation (tDCS): modulation of executive function in health and disease. Current Behavioral Neuroscience Reports, 1(2), 74–85.

    Article  Google Scholar 

  • Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1–77.

    Article  Google Scholar 

  • Sigman, M., & Dehaene, S. (2006). Dynamics of the central bottleneck: dual-task and task uncertainty. PLoS Biology, 4(7), e220.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon, J. R., & Small, A., Jr. (1969). Processing auditory information: interference from an irrelevant cue. Journal of Applied Psychology, 53(5), 433–435.

    Article  PubMed  Google Scholar 

  • Strobach, T., & Karbach, J. (2016). Cognitive training: an overview of features and applications. New York: Springer.

    Book  Google Scholar 

  • Strobach, T., Frensch, P. A., Soutschek, A., & Schubert, T. (2012). Investigation on the improvement and transfer of dual-task coordination skills. Psychological Research, 76(6).

  • Strobach, T., Liepelt, R., Schubert, T., & Kiesel, A. (2012). Task switching: effects of practice on switch and mixing costs. Psychological Research, 76(1), 74–83.

    Article  PubMed  Google Scholar 

  • Strobach, T., Liepelt, R., Pashler, H., Frensch, P. A., & Schubert, T. (2013). Effects of extensive dual-task practice on processing stages in simultaneous choice tasks. Attention, Perception & Psychophysics, 75(5), 900–920.

    Article  Google Scholar 

  • Strobach, T., Salminen, T., Karbach, J., & Schubert, T. (2014). Practice-related optimization and transfer of executive functions: a general review and a specific realization of their mechanisms in dual tasks. Psychological Research, 78(6), 836–851.

    Article  PubMed  Google Scholar 

  • Strobach, T., Schutz, A., & Schubert, T. (2015). On the importance of task 1 and error performance measures in PRP dual-task studies. Frontiers in Psychology, 6, 403.

    PubMed  PubMed Central  Google Scholar 

  • Strobach, T., Soutschek, A., Antonenko, D., Floel, A., & Schubert, T. (2015). Modulation of executive control in dual tasks with transcranial direct current stimulation (tDCS). Neuropsychologia, 68, 8–20.

    Article  PubMed  Google Scholar 

  • Strobach, T., Antonenko, D., Schindler, T., Floel, A., & Schubert, T. (2016). Modulation of executive control in the task switching paradigm with transcranial direct current stimulation (tDCS). Journal of Psychophysiology, 30, 55–65.

    Article  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.

    Article  Google Scholar 

  • Sudevan, P., & Taylor, D. A. (1987). The cuing and priming of cognitive operations. Journal of Experimental Psychology. Human Perception and Performance, 13(1), 89–103.

    Article  PubMed  Google Scholar 

  • Szameitat, A. J., Schubert, T., Muller, K., & Von Cramon, D. Y. (2002). Localization of executive functions in dual-task performance with fMRI. Journal of Cognitive Neuroscience, 14(8), 1184–1199.

    Article  PubMed  Google Scholar 

  • Szameitat, A. J., Lepsien, J., von Cramon, D. Y., Sterr, A., & Schubert, T. (2006). Task-order coordination in dual-task performance and the lateral prefrontal cortex: an event-related fMRI study. Psychological Research, 70(6), 541–552.

    Article  PubMed  Google Scholar 

  • Tayeb, Y., & Lavidor, M. (2016). Enhancing switching abilities: improving practice effect by stimulating the dorsolateral pre frontal cortex. Neuroscience, 313, 92–98.

    Article  PubMed  Google Scholar 

  • Teo, F., Hoy, K. E., Daskalakis, Z. J., & Fitzgerald, P. B. (2011). Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Frontiers in Psychiatry, 2, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tollner, T., Strobach, T., Schubert, T., & Muller, H. J. (2012). The effect of task order predictability in audio-visual dual task performance: just a central capacity limitation? Frontiers in Integrative Neuroscience, 6, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Utz, K. S., Dimova, V., Oppenlander, K., & Kerkhoff, G. (2010). Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia, 48(10), 2789–2810.

    Article  PubMed  Google Scholar 

  • Van Selst, M., Ruthruff, E., & Johnston, J. C. (1999). Can practice eliminate the psychological refractory period effect? Journal of Experimental Psychology. Human Perception and Performance, 25(5), 1268–1283.

    Article  PubMed  Google Scholar 

  • Wagner, A. D., Maril, A., Bjork, R. A., & Schacter, D. L. (2001). Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. NeuroImage, 14(6), 1337–1347.

    Article  PubMed  Google Scholar 

  • Wendt, M., & Kiesel, A. (2008). The impact of stimulus-specific practice and task instructions on response congruency effects between tasks. Psychological Research, 72(4), 425–432.

    Article  PubMed  Google Scholar 

  • Wendt, M., Heldmann, M., Münte, T. F., & Kluwe, R. H. (2007). Disentangling sequential effects of stimulus-and response-related conflict and stimulus-response repetition using brain potentials. Journal of Cognitive Neuroscience, 19(7), 1104–1112.

    Article  PubMed  Google Scholar 

  • Wu, Y. J., Tseng, P., Chang, C. F., Pai, M. C., Hsu, K. S., Lin, C. C., et al. (2014). Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition, 91, 87–94.

    Article  PubMed  Google Scholar 

  • Yeung, N., & Monsell, S. (2003). Switching between tasks of unequal familiarity: the role of stimulus-attribute and response-set selection. Journal of Experimental Psychology. Human Perception and Performance, 29(2), 455–469.

    Article  PubMed  Google Scholar 

  • Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience and Biobehavioral Reviews, 42, 180–192.

    Article  PubMed  Google Scholar 

  • Zaehle, T., Sandmann, P., Thorne, J. D., Jancke, L., & Herrmann, C. S. (2011). Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neuroscience, 12, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zmigrod, S., Zmigrod, L., & Hommel, B. (2016). Transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex affects stimulus conflict but not response conflict. Neuroscience, 322, 320–325.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Franziska Orscheschek for proofreading the manuscript versions and two anonymous reviewers for their helpful comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilo Strobach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strobach, T., Antonenko, D. tDCS-Induced Effects on Executive Functioning and Their Cognitive Mechanisms: a Review. J Cogn Enhanc 1, 49–64 (2017). https://doi.org/10.1007/s41465-016-0004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-016-0004-1

Keywords

Navigation