Skip to main content
Log in

Study on the corrosion behavior of 316H stainless steel in molten NaCl–KCl–MgCl2 salts with and without purification

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The corrosion behavior of 316H stainless steel (SS) in the impure and purified NaCl–KCl–MgCl2 salt was investigated at 700 °C. Results indicate that the main deleterious impurity induced corrosion in the impure salt was the absorbed moisture, present in the form of MgCl2·6H2O. 316H SS occurred severe intergranular corrosion with a corrosion depth of 130 μm for 1000 h in the impure NaCl–KCl–MgCl2 salt. In contrast, the purification treatment of molten chloride salt by the dissolved Mg metal can remove the absorbed moisture, and the corresponding reactions were also discussed. As a result, the corrosiveness of NaCl–KCl–MgCl2 salt is reduced significantly. 316H SS occurred slight uniform corrosion with a depth of less than 5 μm for 3000 h in the purified NaCl–KCl–MgCl2 salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00331 and https://cstr.cn/31253.11.sciencedb.j00186.00331.

References

  1. R. Serrano-López, J. Fradera, S. Cuesta-López, Molten salts database for energy applications. Chem. Eng. Process. 73, 87–102 (2013). https://doi.org/10.1016/j.cep.2013.07.008

  2. M. Zhu, H. Yi, J. Lu et al., Corrosion of Ni–Fe based alloy in chloride molten salts for concentrating solar power containing aluminum as corrosion inhibitor. Sol. Energ. Mat. Sol. 241, 111737 (2022). https://doi.org/10.1016/j.solmat.2022.111737

    Article  Google Scholar 

  3. L.Y. He, S.P. Xia, X.M. Zhou et al., Th–U cycle performance analysis based on molten chloride salt and molten fluoride salt fast reactors. Nucl. Sci. Tech. 31, 83 (2020). https://doi.org/10.1007/s41365-020-00790-x

    Article  Google Scholar 

  4. L.Y. He, G.C. Li, S.P. Xia et al., Effect of 37Cl enrichment on neutrons in a molten chloride salt fast reactor. Nucl. Sci. Tech. 31, 27 (2020). https://doi.org/10.1007/s41365-020-0740-x

    Article  Google Scholar 

  5. W. Ding, A. Bonk, T. Bauer, Molten chloride salts for next generation CSP plants: selection of promising chloride salts & study on corrosion of alloys in molten chloride salts. AIP Conf. Proc. 2126, 200014 (2019). https://doi.org/10.1063/1.5117729

    Article  Google Scholar 

  6. G. Mohan, M. Venkataraman, J. Gomez-Vidal et al., Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energ. Convers. Manage. 167, 156–164 (2018). https://doi.org/10.1016/j.enconman.2018.04.100

    Article  Google Scholar 

  7. X. Wei, M. Song, Q. Peng et al., A new ternary chloride eutectic mixture and its thermo-physical properties for solar thermal energy storage. Energy Procedia. 61, 1314–1317 (2014). https://doi.org/10.1016/j.egypro.2014.11.1089

    Article  Google Scholar 

  8. A.G. Fernández, M.I. Lasanta, F.J. Pérez, Molten salt corrosion of stainless steels and low-Cr steel in CSP plants. Oxid. Met. 78, 329–348 (2012). https://doi.org/10.1007/s11085-012-9310-x

    Article  Google Scholar 

  9. W. Ding, T. Bauer, Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering 7, 334–347 (2021). https://doi.org/10.1016/j.eng.2020.06.027

    Article  Google Scholar 

  10. B. Grégoire, C. Oskay, T.M. Meißner et al., Corrosion mechanisms of ferritic-martensitic P91 steel and Inconel 600 nickel-based alloy in molten chlorides. Part I: NaCl-KCl binary system. Sol. Energ. Mat. Sol. 215, 110659 (2020). https://doi.org/10.1016/j.solmat.2020.110659

  11. B. Grégoire, C. Oskay, T.M. Meißner et al., Corrosion mechanisms of ferritic-martensitic P91 steel and Inconel 600 nickel-based alloy in molten chlorides. Part II: NaCl-KCl-MgCl2 ternary system. Sol. Energ. Mat. Sol. 216, 110675 (2020). https://doi.org/10.1016/j.solmat.2020.110675

  12. K. Vignarooban, P. Pugazhendhi, C. Tucker et al., Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications. Sol. Energy 103, 62–69 (2014). https://doi.org/10.1016/j.solener.2014.02.002

    Article  ADS  Google Scholar 

  13. W. Ding, H. Shi, Y. Xiu et al., Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol. Energ. Mat. Sol. 184, 22–30 (2018). https://doi.org/10.1016/j.solmat.2018.04.025

    Article  Google Scholar 

  14. M. Sarvghad, S. Delkasar Maher, D. Collard et al., Materials compatibility for the next generation of concentrated solar power plants. Energy Storage Mater. 14, 179–198 (2018). https://doi.org/10.1016/j.ensm.2018.02.023

  15. J.C. Gomez-Vidal, A.G. Fernandez, R. Tirawat et al., Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I. Pre-oxidation treatment and isothermal corrosion tests. Sol. Energ. Mat. Sol. 166, 222–233 (2017). https://doi.org/10.1016/j.solmat.2017.02.019

    Article  Google Scholar 

  16. H. Ai, S. Liu, X.X. Ye et al., Metallic impurities induced corrosion of a Ni-26W-6Cr alloy in molten fluoride salts at 850 °C. Corros. Sci. 178, 109079 (2021). https://doi.org/10.1016/j.corsci.2020.109079

    Article  Google Scholar 

  17. J. Qiu, B. Leng, H. Liu et al., Effect of SO42- on the corrosion of 316L stainless steel in molten FLiNaK salt. Corros. Sci. 144, 224–229 (2018). https://doi.org/10.1016/j.corsci.2018.08.057

    Article  Google Scholar 

  18. S.S. Raiman, S. Lee, Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts. J. Nucl. Mater. 511, 523–535 (2018). https://doi.org/10.1016/j.jnucmat.2018.07.036

    Article  ADS  Google Scholar 

  19. Q. Yang, J. Ge, J. Zhang, Electrochemical study on the kinetic properties of Fe2+/Fe, Ni2+/Ni, Cr2+/Cr and Cr3+/Cr2+ in molten MgCl2-KCl-NaCl salts. J. Electrochem. Soc. 168, 012504 (2021). https://doi.org/10.1149/1945-7111/abdafc

    Article  ADS  Google Scholar 

  20. L. Guo, Q. Liu, H. Yin et al., Excellent corrosion resistance of 316 stainless steel in purified NaCl-MgCl2 eutectic salt at high temperature. Corros. Sci. 166, 012504 (2020). https://doi.org/10.1016/j.corsci.2020.108473

    Article  Google Scholar 

  21. P. Lu, L. Guo, Q. Liu, et al., Excellent high temperature corrosion resistance of 304 stainless steel immersed in purified NaCl–MgCl2 eutectic salts. Mater. Chem. Phys. 296 (2023). https://doi.org/10.1016/j.matchemphys.2022.127216

  22. H. Sun, J.-Q. Wang, Z. Tang et al., Assessment of effects of Mg treatment on corrosivity of molten NaCl-KCl-MgCl2 salt with Raman and Infrared spectra. Corros. Sci. 164, 108350 (2019). https://doi.org/10.1016/j.corsci.2019.108350

    Article  Google Scholar 

  23. W. Ding, J. Gomez-Vidal, A. Bonk et al., Molten chloride salts for next generation CSP plants: electrolytical salt purification for reducing corrosive impurity level. Sol. Energ. Mat. Sol. 199, 8–15 (2019). https://doi.org/10.1016/j.solmat.2019.04.021

    Article  Google Scholar 

  24. X.Q. Zheng, Q. Dou, M. Cheng et al., Study on removal of oxide from carrier salt in molten salt reactor by vacuum distillation. Nucl. Tech. 45, 040302 (2022). https://doi.org/10.11889/j.0253-3219.2022.hjs.45.040302. (in Chinese)

  25. J.W. Ambrosek, Molten chloride salts for heat transfer in nuclear systems. Dissertation, The University of Wisconsin, Madison (2011)

  26. K. Hanson, K.M. Sankar, P.F. Weck et al., Effect of excess Mg to control corrosion in molten MgCl2 and KCl eutectic salt mixture. Corros. Sci. 194, 109914 (2022). https://doi.org/10.1016/j.corsci.2021.109914

  27. W. Ding, H. Shi, A. Jianu et al., Molten chloride salts for next generation concentrated solar power plants: mitigation strategies against corrosion of structural materials. Sol. Energ. Mat. Sol. 193, 298–313 (2019). https://doi.org/10.1016/j.solmat.2018.12.020

    Article  Google Scholar 

  28. S. Choi, N.E. Orabona, O.R. Dale et al., Effect of Mg dissolution on cyclic voltammetry and open circuit potentiometry of molten MgCl2-KCl-NaCl candidate heat transfer fluid for concentrating solar power. Sol. Energ. Mat. Sol. 202, 110087 (2019). https://doi.org/10.1016/j.solmat.2019.110087

    Article  Google Scholar 

  29. A. Mortazavi, Y. Zhao, M. Esmaily, et al., High-temperature corrosion of a nickel-based alloy in a molten chloride environment—the effect of thermal and chemical purifications. Sol. Energ. Mat. Sol. 236, 111542 (2022). https://doi.org/10.1016/j.solmat.2021.111542

  30. X. Li, L. Chang, C. Liu et al., Effect of thermal aging on corrosion behavior of type 316H stainless steel in molten chloride salt. Corros. Sci. 191, 109784 (2021). https://doi.org/10.1016/j.corsci.2021.109784

    Article  Google Scholar 

  31. Q. Liu, H. Sun, H. Yin et al., Corrosion behaviour of 316H stainless steel in molten FLiNaK eutectic salt containing graphite particles. Corros. Sci. 160, 108174 (2019). https://doi.org/10.1016/j.corsci.2019.108174

    Article  Google Scholar 

  32. Q. Huang, G. Lu, J. Wang et al., Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O. J. Anal. Appl. Pyrol. 91, 159–164 (2011). https://doi.org/10.1016/j.jaap.2011.02.005

    Article  Google Scholar 

  33. Q. Liu, Z. Wang, W. Liu et al., Ni-Mo-Cr alloy corrosion in molten NaCl-KCl-MgCl2 salt and vapour. Corros. Sci. 180, 109183 (2021). https://doi.org/10.1016/j.corsci.2020.109183

    Article  Google Scholar 

  34. W. Ding, A. Bonk, J. Gussone et al., Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage. J. Energy Storage 15, 408–414 (2018). https://doi.org/10.1016/j.est.2017.12.007

    Article  Google Scholar 

  35. A. Plambeck, Electromotive force series in molten salts. J. Chem. Eng. Data 12, 77–82 (1967). https://doi.org/10.1021/je60032a023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hua Ai, Xin-Mei Yang, and Yan-Jun Chen. The first draft of the manuscript was written by Hua Ai, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hua Ai, Xin-Mei Yang or Yan-Jun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Science Foundation of Shanghai (No. 22ZR1474600), the National Natural Science Foundation of China (No. 12175302), the “Thorium Molten Salt Reactor Nuclear Energy System” Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA 02040000) and the “Transformational Technologies for Clean Energy and Demonstration,” Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA 21000000).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, H., Yang, XM., Liu, HJ. et al. Study on the corrosion behavior of 316H stainless steel in molten NaCl–KCl–MgCl2 salts with and without purification. NUCL SCI TECH 34, 191 (2023). https://doi.org/10.1007/s41365-023-01352-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01352-7

Keywords

Navigation