Skip to main content
Log in

The 3D nanoimaging beamline at SSRF

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Full-field transmission X-ray microscopy (TXM) is a powerful non-destructive three-dimensional (3D) imaging method with a nanoscale spatial resolution that has been used in most synchrotron facilities worldwide. An in-house-designed TXM system was constructed at the BL18B 3D nanoimaging beamline at the Shanghai Synchrotron Radiation Facility. The beamline operates from 5 to 14 keV and enables 20 nm spatial resolution imaging. The characterization details of the beamline are described in this paper. The performances in terms of spatial resolution, nano-CT, and nano-spectral imaging of the TXM beamline are also presented in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig.9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.13606 and https://cstr.cn/31253.11.sciencedb.13606.

References

  1. M.Y. Ge, D.S. Coburn, E. Nazaretski et al., One-minute nano-tomography using hard X-ray full-field transmission microscope. Appl. Phys. Lett. 113, 083109 (2018). https://doi.org/10.1063/1.5048378

    Article  ADS  Google Scholar 

  2. S.S. Lee, I.H. Kwon, J.Y. Kim et al., Early commissioning results for spectroscopic X-ray nano-imaging beamline BL 7C sXNI at PLS-II. J. Synchrotron Rad. 24, 1276–1282 (2017). https://doi.org/10.1107/S1600577517013972

    Article  Google Scholar 

  3. S. Wang, K. Zhang, W. Huang et al., Zone plate-based full-field transmission X-ray microscopy beamline design at nearly diffraction-limited synchrotron radiation facility. Nucl. Inst. Methods Phys. Res. A 993, 165089 (2021). https://doi.org/10.1016/j.nima.2021.165089

    Article  Google Scholar 

  4. F.F. Yang, Y.J. Liu, S.K. Martha et al., Nanoscale morphological and chemical changes of high voltage lithium−manganese rich NMC composite cathodes with cycling. Nano Lett. 14, 4334–4341 (2014). https://doi.org/10.1021/nl502090z

    Article  ADS  Google Scholar 

  5. S. Bauer, L.D. Biasi, S. Glatthaar et al., In operando study of the high voltage spinel cathode material LiNi0.5Mn1.5O4 using two dimensional full-field spectroscopic imaging of Ni and Mn. Phys. Chem. Chem. Phys. 17, 16388–16397 (2015). https://doi.org/10.1039/C5CP02075A

    Article  Google Scholar 

  6. X.L. Tang, Z.X. Jiang, S. Jiang et al., Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Mar. Pet. Geol. 78, 99–109 (2016). https://doi.org/10.1016/j.marpetgeo.2016.09.010

    Article  Google Scholar 

  7. Y.F. Sun, Y.X. Zhao, L. Yuan et al., Quantifying nano-pore heterogeneity and anisotropy in gas shale by synchrotron radiation nano-CT. Micropor. Mesopor. Mat. 258, 8–16 (2018). https://doi.org/10.1016/j.micromeso.2017.08.049

    Article  Google Scholar 

  8. A. Ronne, L. He, D. Dolzhnikov et al., Revealing 3D morphological and chemical evolution mechanisms of metals in molten salt by multimodal microscopy. ACS Appl. Mater. Interfaces 12, 17321–17333 (2020). https://doi.org/10.1021/acsami.9b19099

    Article  Google Scholar 

  9. J.K. Lee, P. Kim, K. Krause et al., Designing catalyst layer morphology for high-performance water electrolysis using synchrotron X-ray nanotomography. Cell Rep. Phys. Sci. 4, 101232 (2023). https://doi.org/10.1016/j.xcrp.2022.101232

    Article  Google Scholar 

  10. J.C. Andrews, F. Meirer, Y.J. Liu et al., Transmission X-ray microscopy for full-field nano-imaging of biomaterials. Microsc. Res. Tech. 74, 671–681 (2011). https://doi.org/10.1002/jemt.20907

    Article  Google Scholar 

  11. P. Liu, D. Yen, B.S. Vishnugopi et al., Influence of potassium metal-support interactions on dendrite growth. Angew. Chem. Int. Ed. 62, e2023009 (2023). https://doi.org/10.1002/anie.202300943

    Article  Google Scholar 

  12. P.F. Sun, B. Deng, Q. Yang et al., An accelerated OSEM reconstruction algorithm using an accelerating factor for X-ray fluorescence tomography. Nucl. Tech. 38, 060201 (2015). https://doi.org/10.11889/j.0253-3219.2015.hjs.38.060201. (in Chinese)

    Article  Google Scholar 

  13. M.W. Xu, Y.L. Xue, R.C. Chen et al., A biometrics recognition instrument using X-ray phase contrast imaging for biosafety inspection. Nucl. Tech. 44, 080202 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.080202. (in Chinese)

    Article  Google Scholar 

  14. Z.J. Qiu, K. Li, H.L. Xie et al., Study of 20 Hz high spatial-temporal resolution monochromatic X-ray dynamic micro-CT. Nucl. Tech. 46, 070101 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.070101. (in Chinese)

    Article  Google Scholar 

  15. J. Kirz, D. Attwood, X-ray data booklet. Section 4.4 ZONE PLATES (2009)

  16. W.Z. Zhang, J.C. Tang, S.S. Wang et al., The protein complex crystallography beamline (BL19U1) at the Shanghai synchrotron radiation facility. Nucl. Sci. Tech. 30, 170 (2019). https://doi.org/10.1007/s41365-019-0683-2

    Article  Google Scholar 

  17. F. Tao, Y.D. Wang, Y.Q. Ren et al., Design and detection of ellipsoidal mono-capillary for X-ray nano-imaging. Acta Opt. Sin. 37, 1034002 (2017). https://doi.org/10.3788/AOS201737.1034002. (in Chinese)

    Article  Google Scholar 

  18. F. Tao, B. Feng, B. Deng et al., Micro X-ray fluorescence imaging based on ellipsoidal single-bounce mono-capillary. Spectros. Spect. Anal. 40, 2011–2015 (2020). https://doi.org/10.3964/j.issn.1000-0593(2020)07-2011-05. (in Chinese)

    Article  Google Scholar 

  19. F. Meirer, J. Cabana, Y.J. Liu et al., Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Rad. 18, 773–781 (2011). https://doi.org/10.1107/S0909049511019364

    Article  Google Scholar 

  20. Y. Kim, J. Lim, Exploring spectroscopic X-ray nano-imaging with Zernike phase contrast enhancement. Sci. Rep. 12, 2894 (2022). https://doi.org/10.1038/s41598-022-06827-y

    Article  ADS  Google Scholar 

  21. F. Tao, J. Wang, G.H. Du et al., Full-field hard X-ray nano-tomography at SSRF. J. Synchrotron Rad. 30, 815–821 (2023). https://doi.org/10.1107/S1600577523003168

    Article  Google Scholar 

  22. F. Li, Y. Guan, Y. Xiong et al., Method for extending the depth of focus in X-ray microscopy. Opt. Express 25, 7657–7667 (2017). https://doi.org/10.1364/OE.25.007657

    Article  ADS  Google Scholar 

  23. B. Su, R.Y. Gao, T. Fen et al., Dual U-Net based feature map algorithm for automatic projection alignment of synchrotron nano-CT. Nucl. Inst. Methods Phys. Res. A 1040, 167242 (2022). https://doi.org/10.1016/j.nima.2022.167242

    Article  Google Scholar 

  24. Y.J. Liu, F. Meirer, J.Y. Wang et al., 3D elemental sensitive imaging using transmission X-ray microscopy. Anal. Bioanal. Chem. 404, 1297–1301 (2012). https://doi.org/10.1007/s00216-012-5818-9

    Article  Google Scholar 

  25. Y.J. Liu, F. Meirer, P.A. Williams, TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy. J. Synchrotron Rad. 19, 281–287 (2012). https://doi.org/10.1107/S0909049511049144

    Article  Google Scholar 

  26. SSRFDA System V1.0, National Copyright Administration of the People’s Republic of China. (Registration number: 2022SR1004270)

  27. S. Vogt, G. Schneider, A. Steuernagel et al., X-Ray microscopic studies of the drosophila dosage compensation complex. J. Struct. Biol. 132, 123–132 (2000). https://doi.org/10.1006/jsbi.2000.4277

    Article  Google Scholar 

  28. T.Y. Chen, Y.T. Chen, C.L. Wang et al., Full-field microimaging with 8 keV X-rays achieves a spatial resolutions better than 20 nm. Opt. Express 19, 19919–19924 (2011). https://doi.org/10.1364/OE.19.019919

    Article  ADS  Google Scholar 

  29. J. Wang, Y.K. Chen, Q. Yuan et al., Automated markerless full field hard X-ray microscopic tomography at sub-50nm 3-dimension spatial resolution. Appl. Phys. Lett. 100, 143107 (2012). https://doi.org/10.1063/1.3701579

    Article  ADS  Google Scholar 

  30. Q.X. Yuan, K. Zhang, Y. Hong et al., A 30 nm-resolution hard X-ray microscope with X-ray fluorescence mapping capability at BSRF. J. Synchrotron Rad. 19, 1021–1028 (2012). https://doi.org/10.1107/S0909049512032852

    Article  Google Scholar 

  31. Y.F. Su, Q.Y. Zhang, L. Chen et al., Stress accumulation in Ni-rich layered oxide cathodes: Origin, impact, and resolution. J. Energy Chem. 65, 236–253 (2022). https://doi.org/10.1016/j.jechem.2021.05.048

    Article  Google Scholar 

  32. P.C. Tsai, B. Wen, M. Wolfman et al., Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries. Energy Environ. Sci. 11, 860–871 (2018). https://doi.org/10.1039/c8ee00001h

    Article  Google Scholar 

  33. A. Jetybayeva, N. Schön, J. Oh et al., Unraveling the state of charge-dependent electronic and ionic structure—property relationships in NCM622 cells by multiscale characterization. ACS Energy Lett. 5, 1731–1742 (2022). https://doi.org/10.1021/acsaem.1c03173

    Article  Google Scholar 

  34. J. Chen, Y. Yang, Y. Tang et al., Constructing a thin disordered self-protective layer on the LiNiO2 primary particles against oxygen release. Adv. Funct. Mater. 33, 2211515 (2023). https://doi.org/10.1002/adfm.202211515

    Article  Google Scholar 

Download references

Acknowledgements

The authors also wish to acknowledge their colleagues from the Department of Beamline Engineering at the SSR for their assistance during the construction of the BL18B beamline.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ling Zhang, Fen Tao, Jun Wang, Ruo-Yang Gao, Bo Su, Guo-Hao Du, Ai-Guo Li, Ti-Qiao Xiao, and Biao Deng. The first draft of the manuscript was written by Ling Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ai-Guo Li or Biao Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFA1600703, 2021YFF0701202, and 2021YFA1601001) and the National Natural Science Foundation of China (Nos. 12275343 and U1932205).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Tao, F., Wang, J. et al. The 3D nanoimaging beamline at SSRF. NUCL SCI TECH 34, 201 (2023). https://doi.org/10.1007/s41365-023-01347-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01347-4

Keywords

Navigation