Skip to main content
Log in

Investigation of the level spectra of nuclei in the northeast region of doubly magic 40Ca with intruder orbit \(g_{9/2}\)

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

This study utilizes large-scale shell model calculations with the extended pairing and multipole–multipole force model (EPQQM) to investigate low-lying states in the nuclei of 42Ca, \(^{42}\)Sc, and \(^{42-44}\)Ti. The model space in this study includes the fp shell as well as the intruder \(g_{9/2}\) orbit, which accurately reproduces the positive parity levels observed in the aforementioned nuclei and predicts high energy states with negative parity coupled with the intruder \(g_{9/2}\). The study further predicts two different configurations in \(^{43}\)Ti at around 6 MeV, specifically \(\pi f^2_{7/2} \nu g_{9/2}\) and \(\pi f_{7/2}g_{9/2} \nu f_{7/2}\), both of which involve the intruder orbit \(g_{9/2}\). The levels coupled with the intruder \(g_{9/2}\) in \(^{44}\)Ti are predicted to lie between 7 and 11 MeV. The inclusion of the intruder orbit \(g_{9/2}\) is crucial for the exploration of high energy states in the northeast region of the doubly magic nucleus 40Ca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.08187 and https://cstr.cn/31253.11.sciencedb.08187.

References

  1. W.R. Dixon, R.S. Storey, J.J. Simpson, Lifetimes of \(^{44}\)Ti levels. Nucl. Phys. A 202, 579 (1973). https://doi.org/10.1016/0375-9474(73)90644-1

    Article  ADS  Google Scholar 

  2. J.J. Simpson, W.R. Dixon, R.S. Storey, Evidence for rotational bands in \(^{44}\)Ti. Phys. Rev. Lett. 31, 946 (1973). https://doi.org/10.1103/PhysRevLett.31.946

    Article  ADS  Google Scholar 

  3. W.R. Dixon, R.S. Storey, J.J. Simpson, Levels of \(^{44}\)Ti from the 40Ca(\(\alpha, \gamma\)) \(^{44}\)Ti reaction. Phys. Rev. C 15, 1896 (1977). https://doi.org/10.1103/PhysRevC.15.1896

    Article  ADS  Google Scholar 

  4. J.W. Olness, J.J. Kolata, E.K. Warburton, High-spin states in \(^{44}\)Ti and \(^{44}\)Sc\(^{*}\). Phys. Rev. C 10, 1663 (1974). https://doi.org/10.1103/PhysRevC.10.1663

    Article  ADS  Google Scholar 

  5. C. Michelagnoli, C.A. Ur, E. Farnea et al., Lifetime measurement in the N = Z nucleus \(^{44}\)Ti\(^{*}\). Acta Phys. Pol., B 42, 825 (2011). https://doi.org/10.5506/APhysPolB.42.825

    Article  Google Scholar 

  6. K. Arnswald, T. Braunroth, M. Seidlitz et al., Enhanced collectivity along the N = Z line: Lifetime measurements in \(^{44}\)Ti, \(^{48}\)Cr, and \(^{52}\)Fe. Phys. Lett. B 772, 599–606 (2017). https://doi.org/10.1016/j.physletb.2017.07.032

    Article  ADS  Google Scholar 

  7. K. Arnswald, P. Reiter, A. Blazhev et al., Lifetime measurements in \(^{44}\)Ti. Phys. Rev. C 102, 054302 (2020). https://doi.org/10.1103/PhysRevC.102.054302

    Article  ADS  Google Scholar 

  8. L. Zhou, S.M. Wang, D.Q. Fang et al., Recent progress in two-proton radioactivity. Nucl. Sci. Tech. 33, 105 (2022). https://doi.org/10.1007/s41365-022-01091-1

    Article  Google Scholar 

  9. X. Zhou, M. Wang, Y.H. Zhang et al., Charge resolution in the isochronous mass spectrometry and the mass of \(^{51}\)Co. Nucl. Sci. Tech. 32, 37 (2021). https://doi.org/10.1007/s41365-021-00876-0

    Article  Google Scholar 

  10. X.B. Wei, H.L. Wei, Y.T. Wang et al., Multiple-models predictions for drip line nuclides in projectile fragmentation of 40,48Ca, \(^{58,64}\)Ni, and \(^{78,86}\)Kr at 140 MeV/u. Nucl. Sci. Tech. 33, 155 (2022). https://doi.org/10.1007/s41365-022-01137-4

    Article  Google Scholar 

  11. Y.F. Gao, B.S. Cai, C.X. Yuan et al., Investigation of \(\beta ^-\) decay half-life and delayed neutron emission with uncertainty analysis. Nucl. Sci. Tech. 34, 9 (2023). https://doi.org/10.1007/s41365-022-01153-4

    Article  Google Scholar 

  12. A.A. Raduta, L. Zamick, E. Moya de Guerra et al., Description of single and double analog states in the \(f_{7/2}\) shell: The Ti isotopes. Phys. Rev. C 68, 044317 (2003). https://doi.org/10.1103/PhysRevC.68.044317

    Article  ADS  Google Scholar 

  13. A. Juodagalvis, I. Ragnarsson, S. Aberg, Cranked Nilsson-Strutinsky vs the spherical shell model: A comparative study of pf-shell nuclei. Phys. Rev. C 73, 044327 (2006). https://doi.org/10.1103/PhysRevC.73.044327

    Article  ADS  Google Scholar 

  14. Y. Utsuno, T. Otsuka, B. Alex Brown et al., Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect. Phys. Rev. C 86, 051301 (2012). https://doi.org/10.1103/PhysRevC.86.051301

    Article  ADS  Google Scholar 

  15. B.A. Brown, B.H. Wildenthal, Status of the nuclear shell model. Annu. Rev. Nucl. Part. Sci. 38, 29 (1988). https://doi.org/10.1146/annurev.ns.38.120188.000333

    Article  ADS  Google Scholar 

  16. M. Honma, T. Otsuka, B.A. Brown et al., Shell-model description of neutron-rich pf-shell nuclei with a new effective interaction GXPF1. Eur. Phys. J. A 25, 499 (2005). https://doi.org/10.1140/epjad/i2005-06-032-2

    Article  Google Scholar 

  17. Y. Utsuno, T. Otsuka, T. Mizusaki et al., Varying shell gap and deformation in N∼20 unstable nuclei studied by the Monte Carlo shell model. Phys. Rev. C 60, 054315 (1999). https://doi.org/10.1103/PhysRevC.60.054315

    Article  ADS  Google Scholar 

  18. A. Poves, A. Zuker, Theoretical spectroscopy and the fp shell. Phys. Rep. 70, 235 (1981). https://doi.org/10.1016/0370-1573(81)90153-8

    Article  ADS  Google Scholar 

  19. M. Hasegawa, K. Kaneko, S. Tazaki, Improvement of the extended P + QQ interaction by modifying the monopole field. Nucl. Phys. A 688, 765 (2001). https://doi.org/10.1016/S0375-9474(00)00602-3

    Article  ADS  Google Scholar 

  20. K. Kaneko, M. Hasegawa, T. Mizusaki, Quadrupole and octupole softness in the N = Z nucleus \(^{64}\)Ge. Phys. Rev. C 66, 051306(R) (2002). https://doi.org/10.1103/PhysRevC.66.051306

    Article  ADS  Google Scholar 

  21. K. Kaneko, Y. Sun, M. Hasegawa et al., Shell model study of single-particle and collective structure in neutron-rich Cr isotopes. Phys. Rev. C 78, 064312 (2008). https://doi.org/10.1103/PhysRevC.78.064312

    Article  ADS  Google Scholar 

  22. K. Kaneko, Y. Sun, T. Mizusaki et al., Shell-model study for neutron-rich sd-shell nuclei. Phys. Rev. C 83, 014320 (2011). https://doi.org/10.1103/PhysRevC.83.014320

    Article  ADS  Google Scholar 

  23. H.K. Wang, S.K. Ghorui, Z.Q. Chen et al., Analysis of low-lying states, neutron-core excitations, and electromagnetic transitions in tellurium isotopes \(^{130-134}\)Te. Phys. Rev. C 102, 054316 (2020). https://doi.org/10.1103/PhysRevC.102.054316

    Article  ADS  Google Scholar 

  24. H.K. Wang, S.K. Ghorui, K. Kaneko et al., Large-scale shell-model study for excitations across the neutron N = 82 shell gap in \(^{131-133}\)Sb. Phys. Rev. C 96, 054313 (2017). https://doi.org/10.1103/PhysRevC.96.054313

    Article  Google Scholar 

  25. H.K. Wang, Y. Sun, H. Jin et al., Structure analysis for hole-nuclei close to \(^{132}\)Sn by a large-scale shell-model calculation. Phys. Rev. C 88, 054310 (2013). https://doi.org/10.1103/PhysRevC.88.054310

    Article  ADS  Google Scholar 

  26. H.K. Wang, K. Kaneko, Y. Sun, Isomerism and persistence of the N = 82 shell closure in the neutron-rich \(^{132}\)Sn region. Phys. Rev. C 89, 064311 (2014). https://doi.org/10.1103/PhysRevC.89.064311

    Article  ADS  Google Scholar 

  27. H.K. Wang, K. Kaneko, Y. Sun et al., Monopole effects, isomeric states, and cross-shell excitations in the A = 129 hole nuclei near \(^{132}\)Sn. Phys. Rev. C 95, 011304 (2017). https://doi.org/10.1103/PhysRevC.103.024317

    Article  ADS  Google Scholar 

  28. A.J. Majarshin, Y.A. Luo, F. Pan et al., Nuclear structure and band mixing in \(^{194}\)Pt. Phys. Rev. C 103, 024317 (2021). https://doi.org/10.1103/PhysRevC.103.024317

    Article  ADS  Google Scholar 

  29. A.J. Majarshin, Y.A. Luo, F. Pan et al., Structure of rotational bands in \(^{109}\)Rh. Phys. Rev. C 104, 014321 (2021). https://doi.org/10.1103/PhysRevC.104.014321

    Article  ADS  Google Scholar 

  30. http://www.nndc.bnl.gov/ensdf/

  31. B.A. Brown, W.D.M. Rae, The shell-model code NuShellX@MSU. Nucl. Data Sheets 120, 115 (2014). https://doi.org/10.1016/j.nds.2014.07.022

    Article  ADS  Google Scholar 

  32. Y.Z. Ma, L. Coraggio, L.D. Augelis et al., Contribution of chiral three-body forces to the monopole component of the effective shell-model Hamiltonian. Phys. Rev. C 100, 034324 (2019). https://doi.org/10.1103/PhysRevC.100.034324

    Article  ADS  Google Scholar 

  33. S.R. Stroberg, H. Hergert, S.K. Bogner et al., Nonempirical interactions for the nuclear shell model: An update. Annu. Rev. Nucl. Part. Sci. 69, 307 (2017). https://doi.org/10.1146/annurev-nucl-101917-021120

    Article  ADS  Google Scholar 

  34. A.P. Zuker, Three-body monopole corrections to realistic interactions. Phys. Rev. Lett. 90, 042502 (2003). https://doi.org/10.1103/PhysRevLett.90.042502

    Article  ADS  Google Scholar 

  35. H.K. Wang, Z.H. Li, Y.B. Wang et al., High-spin levels, \(\beta\)-decay and monopole effects in A = 128 hole nuclei near \(^{132}\)Sn. Phys. Lett. B 833, 137337 (2022). https://doi.org/10.1016/j.physletb.2022.137337

    Article  Google Scholar 

  36. R.F. Takaharu Otsuka, T. Suzuki, H. Grawe et al., Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005). https://doi.org/10.1103/PhysRevLett.95.232502

    Article  ADS  Google Scholar 

  37. H.K. Wang, Z.Q. Chen, H. Jin et al., Ground state inversions in hole nuclei near 132Sn driven by the monopole interaction. Phys. Rev. C 104, 014301 (2021). https://doi.org/10.1103/PhysRevC.104.014301

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by Jin-Zhong Han, Shuai Xu, Amir Jalili, and Han-Kui Wang. The first draft of the manuscript was written by Han-Kui Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Han-Kui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Research at ZSTU is supported by the National Natural Science Foundation of China (No. U2267205). Research at ZKNU is supported by the High-level Talents Research and Startup Foundation Projects for Doctors of Zhoukou Normal University (No. ZKNUC2021006) and Scientific research projects of universities in Henan Province (No. 23A140027).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JZ., Xu, S., Jalili, A. et al. Investigation of the level spectra of nuclei in the northeast region of doubly magic 40Ca with intruder orbit \(g_{9/2}\). NUCL SCI TECH 34, 85 (2023). https://doi.org/10.1007/s41365-023-01243-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01243-x

Keywords

Navigation