Skip to main content
Log in

Theoretical uncertainties of (d,\(^{3}\)He) and (\(^{3}\)He,d) reactions owing to the uncertainties of optical model potentials

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The theoretical uncertainties of single proton transfer cross sections of the (\(^{3}\)He,d) and (d,\(^{3}\)He) reactions, owing to the uncertainties of the entrance- and exit-channel optical model potentials, are examined with the \(^{30}\)Si(\(^{3}\)He,d)\(^{31}\)P, \(^{13}\)B(d,\(^{3}\)He)\(^{12}\)Be, and \(^{34}\)S(\(^{3}\)He,d)\(^{35}\)Cl reactions at incident energies of 25, 46, and 25 MeV, respectively, within the framework of the distorted wave Born approximation. The differential cross sections at the first peaks in the angular distributions of these reactions are found to have uncertainties of approximately 5%, owing to the uncertainties in the optical model potentials from 20,000 calculations of randomly sampled parameters. This amount of uncertainty is found to be nearly independent of the angular momentum transfer and the target masses within the studied range of incident energies. Uncertainties in the single proton spectroscopic factors obtained by matching the theoretical and experimental cross sections at different scattering angles are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00011 and https://cstr.cn/31253.11.sciencedb.j00186.00011.

References

  1. P. Bém, V. Burjan, V. Kroha et al., Asymptotic normalization coefficients for \({}^{14}\rm N{{\leftrightarrow }^{13}\rm C}+p\) from \({}^{13}\rm C{{(}^{3}\rm He}{, d)}^{14}\rm N\). Phys. Rev. C 62, 024320 (2000). https://doi.org/10.1103/PhysRevC.62.024320

    Article  ADS  Google Scholar 

  2. A.M. Mukhamedzhanov, P. Bém, V. Burjan et al., Asymptotic normalization coefficients from the \(^{20}\rm Ne{(^{3}\rm He}\), d)\(^{21}\rm Na{ reaction and astrophysical factor for ^{20}\rm Ne}\)  reaction and astrophysical factor for 20Ne(\(p,\gamma\))\(^{21}\rm Na\) Nucl. Phys. Rev. C 73, 035806 (2006). https://doi.org/10.1103/PhysRevC.73.035806

  3. N. Burtebayev, J.T. Burtebayeva, N.V. Glushchenko et al., Effects of t- and \(\upalpha\)-transfer on the spectroscopic information from the 6Li(3He, d)7Be reaction. Nucl. Phys. A 909, 20 (2013). https://doi.org/10.1016/j.nuclphysa.2013.04.008

  4. C. Wen, Y.P. Xu, D.Y. Pang et al., Quenching of neutron spectroscopic factors of radioactive carbon isotopes with knockout reactions within a wide energy range. Chin. Phys. C 41, 054104 (2017). https://doi.org/10.1088/1674-1137/41/5/054104

    Article  ADS  Google Scholar 

  5. W. Liu, J.L. Lou, Y.L. Ye et al., Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction. Nucl. Sci. Tech. 31, 20 (2020). https://doi.org/10.1007/s41365-020-0731-y

  6. T. Aumann, C. Barbieri, D. Bazin et al., Quenching of single-particle strength from direct reactions with stable and rare-isotope beams. Prog. Part. Nucl. Phys. 118, 103847 (2021). https://doi.org/10.1016/j.ppnp.2021.103847

    Article  Google Scholar 

  7. W. Liu, J.L. Lou, Y.L. Ye et al., New investigation of low-lying states in \(^{12}\rm Be\,{ via\, a \,^{2}\rm H}(^{13}\rm B{,^{3}\rm He})\) reaction. Phys. Rev. C 105, 034613 (2022). https://doi.org/10.1103/PhysRevC.105.034613

  8. B.P. Kay, T.L. Tang, I.A. Tolstukhin et al., Quenching of single-particle strength in \(A=15\) nuclei. Phys. Rev. Lett. 129, 152501 (2022). https://doi.org/10.1103/PhysRevLett.129.152501

    Article  ADS  Google Scholar 

  9. R.J. Philpott, W.T. Pinkston, G.R. Satchler, Some studies of realistic form factors for nucleon-transfer reactions. Nucl. Phys. A 119, 241 (1968). https://doi.org/10.1016/0375-9474(68)90300-X

    Article  ADS  Google Scholar 

  10. R.C. Johnson, Theory of the A(d, p)B reaction as a tool for nuclear structure studies. J. Phys. G Nucl. Part. Phys. 41, 094005 (2014). https://doi.org/10.1088/0954-3899/41/9/094005

    Article  ADS  Google Scholar 

  11. J.D. McDonnell, N. Schunck, D. Higdon et al., Uncertainty quantification for nuclear density functional theory and information content of new measurements. Phys. Rev. Lett. 114, 122501 (2015). https://doi.org/10.1103/PhysRevLett.114.122501

    Article  ADS  Google Scholar 

  12. A.E. Lovell, F.M. Nunes, M. Catacora-Rios et al., Recent advances in the quantification of uncertainties in reaction theory. J. Phys. G Nucl. Part. Phys. 48, 014001 (2021). https://doi.org/10.1088/1361-6471/abba72

    Article  ADS  Google Scholar 

  13. M.B. Tsang, J. Lee, S.C. Su et al., Survey of excited state neutron spectroscopic factors for \(Z=8-28\) nuclei. Phys. Rev. Lett. 102, 062501 (2009). https://doi.org/10.1103/PhysRevLett.102.062501

    Article  ADS  Google Scholar 

  14. C.J. Kramer, H.P. Blok, L. Lapikas, A consistent analysis of (e, e’p) and (d,3He) experiments. Nucl. Phys. A 679, 267 (2001). https://doi.org/10.1016/S0375-9474(00)00379-1

  15. A. Gade, P. Adrich, D. Bazin et al., Reduction of spectroscopic strength: weakly-bound and strongly-bound single-particle states studied using one-nucleon knockout reactions. Phys. Rev. C 77, 044306 (2008). https://doi.org/10.1103/PhysRevC.77.044306

    Article  ADS  Google Scholar 

  16. J.A. Tostevin, A. Gade, Systematics of intermediate-energy single-nucleon removal cross-sections. Phys. Rev. C 90, 057602 (2014). https://doi.org/10.1103/PhysRevC.90.057602

    Article  ADS  Google Scholar 

  17. J.A. Tostevin, A. Gade, Updated systematics of intermediate-energy single-nucleon removal cross-sections. Phys. Rev. C 103, 054610 (2021). https://doi.org/10.1103/PhysRevC.103.054610

    Article  ADS  Google Scholar 

  18. Y.P. Xu, D.Y. Pang, X.Y. Yun et al., Proton-neutron asymmetry independence of reduced single-particle strengths derived from (p, d) reactions. Phys. Lett. B 790, 308 (2019). https://doi.org/10.1016/j.physletb.2019.01.034

    Article  ADS  Google Scholar 

  19. W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of \(^{23}\)Na + \(^{40}\)Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). https://doi.org/10.1007/s41365-021-00889-9

  20. H. Leeb, E.W. Schmid, A physical interpretation of the discrete ambiguities in the optical potential for composite particles. Z. Physik A 296, 51 (1980). https://doi.org/10.1007/BF01415614

    Article  ADS  Google Scholar 

  21. M.E. Brandan, S.H. Fricke, K.W. McVoy, Resolution of potential ambiguities through farside angular structure: data summary. Phys. Rev. C 38, 673 (1988). https://doi.org/10.1103/PhysRevC.38.673

    Article  ADS  Google Scholar 

  22. X.D. Liu, M.A. Famiano, W.G. Lynch et al., Systematic extraction of spectroscopic factors from \(^{12}\rm C{(d, p)^{13}\rm C}\) and \(^{13}\rm C{(p, d)^{12}\rm C}\) reactions. Phys. Rev. C 69, 064313 (2004). https://doi.org/10.1103/PhysRevC.69.064313

    Article  ADS  Google Scholar 

  23. X.Y. Yun, D.Y. Pang, Y.P. Xu et al., What kind of optical model potentials should be used for deuteron stripping reactions? Sci. China Phys. Mech. Astron. 63, 222011 (2020). https://doi.org/10.1007/s11433-019-9389-6

    Article  ADS  Google Scholar 

  24. R.L. Varner, W.J. Thompson, T.L. McAbee et al., A global nucleon optical model potential. Phys. Rep. 201, 57 (1991). https://doi.org/10.1016/0370-1573(91)90039-O

    Article  ADS  Google Scholar 

  25. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

    Article  ADS  Google Scholar 

  26. Y.L. Xu, H.R. Guo, Y.L. Han et al., Helium-3 global optical model potential with energies below 250 MeV. Sci. China. Phys. Mech. Astron. 54, 2005 (2011). https://doi.org/10.1007/s11433-011-4488-5

    Article  ADS  Google Scholar 

  27. D.Y. Pang, P. Roussel-Chomaz, H. Savajols et al., Global optical model potential for \(A=3\) projectiles. Phys. Rev. C 79, 024615 (2009). https://doi.org/10.1103/PhysRevC.79.024615

    Article  ADS  Google Scholar 

  28. D.Y. Pang, W.M. Dean, A.M. Mukhamedzhanov, Optical model potential of \(A=3\) projectiles for \(1p\)-shell nuclei. Phys. Rev. C 91, 024611 (2015). https://doi.org/10.1103/PhysRevC.91.024611

    Article  ADS  Google Scholar 

  29. Y. Zhang, D.Y. Pang, J.L. Lou, Optical model potential for deuteron elastic scattering with \(1p\)-shell nuclei. Phys. Rev. C 94, 014619 (2016). https://doi.org/10.1103/PhysRevC.94.014619

    Article  ADS  Google Scholar 

  30. J. Vernotte, G. Berrier-Ronsin, J. Kalifa et al., Spectroscopic factors from one-proton stripping reactions on sd-shell nuclei: experimental measurements and shell-model calculations. Nucl. Phys. A 571, 1 (1994). https://doi.org/10.1016/0375-9474(94)90339-5

    Article  ADS  Google Scholar 

  31. J. Lee, D.Y. Pang, Y.L. Han et al., Proton spectroscopic factors deduced from Helium-3 global phenomenological and microscopic optical model potentials. Chin. Phys. Lett. 31, 092103 (2014). https://doi.org/10.1088/0256-307X/31/9/092103

  32. I. Brida, Steven C. Pieper, R.B. Wiringa, Quantum Monte Carlo calculations of spectroscopic overlaps in \(A{\leqslant }7\) nuclei. Phys. Rev. C 84, 024319 (2011). https://doi.org/10.1103/PhysRevC.84.024319

  33. I.J. Thompson, Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167 (1988). https://doi.org/10.1016/0167-7977(88)90005-6

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to work in this paper. Data collection and analysis were performed by Wei-Jia Kong and Dan-Yang Pang. The first draft of the manuscript was written by Dan-Yang Pang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dan-Yang Pang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. U2067205).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, WJ., Pang, DY. Theoretical uncertainties of (d,\(^{3}\)He) and (\(^{3}\)He,d) reactions owing to the uncertainties of optical model potentials. NUCL SCI TECH 34, 95 (2023). https://doi.org/10.1007/s41365-023-01242-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01242-y

Keywords

Navigation