Skip to main content
Log in

Design of an efficient collector for the HIAF electron cooling system

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A collector with high perveance, efficient recuperation, and low secondary emissions is required for the 450-keV electron cooler in the HIAF accelerator complex. To optimize the collection efficiency of the collector, a simulation program, based on the Monte Carlo simulations, was developed in the world’s first attempt to calculate the electron collection efficiency. In this program, the backscattering electrons and secondary electrons generated on the collector surface are calculated using a Monte Carlo approach, and all electron trajectories in the collector region are tracked by the Runge–Kutta method. In this paper, the features and structure of our program are described. The backscattering electron yields, with various collector surface materials, are calculated using our program. Moreover, the collector efficiencies for various collector structures and electromagnetic fields are simulated and optimized. The measurement results of the collection efficiency of the HIAF collector prototype and the CSRm synchrotron are also reported. These experimental results were in good agreement with the simulation results of our program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.C. Yang, J.W. Xia, G.Q. Xiao et al., High Intensity heavy ion Accelerator Facility (HIAF) in China. Nucl. Instrum. Methods B 317(5), 263–265 (2013). https://doi.org/10.1016/j.nimb.2013.08.046

    Article  ADS  Google Scholar 

  2. Y.G. Ma, W.H. Zhao, Special topic: introduction and research topics on the high intensity heavy-ion accelerator facility. Sci. Sin.-Phys. Mech. Astron. 50(11), 112001 (2020). https://doi.org/10.1360/SSPMA-2020-0377 (in Chinese)

  3. H.W. Zhao, H.S. Xu, G.Q. Xiao et al., Huizhou accelerator complex facility and its future development. Sci. Sin.-Phys. Mech. Astron. 50(11), 112006 (2020). https://doi.org/10.1360/SSPMA-2020-0248 (in Chinese)

  4. X.H. Zhou, Z.Y. Zhang, Z.G. Gan et al., Research program of superheavy elements and nuclides based on HIAF. Sci. Sin.-Phys. Mech. Astron. 50(11), 112002 (2020). https://doi.org/10.1360/SSPMA-2020-0288 (in Chinese)

  5. Y.L. Ye, X.F. Yang, Y. Liu et al., Radioactive ion beam physics related to HIAF. Sci. Sin.-Phys. Mech. Astron. 50(11), 112003 (2020). https://doi.org/10.1360/SSPMA-2020-0282 (in Chinese)

  6. B. Guo, W.P. Liu, X.D. Tang et al., Research program of nuclear astrophysics based on the HIAF. Sci. Sin.-Phys. Mech. Astron. 50(11), 112007 (2020). https://doi.org/10.1360/SSPMA-2020-0281 (in Chinese)

  7. X. Xu, S.X. Wang, Z.K. Huang et al., Investigations of the dielectronic recombination of phosphorus-like tin at CSRm. Chin. Phys. B 27(6), 063402 (2020). https://doi.org/10.1088/1674-1056/27/6/063402

    Article  ADS  Google Scholar 

  8. Y.G. Ma, N. Xu, F. Liu, Study of the QCD phase structure at HIAF. Sci. Sin.-Phys. Mech. Astron. 50(11), 112009 (2020). https://doi.org/10.1360/SSPMA-2020-0302 (in Chinese)

  9. X.F. Niu, F. Bai, X.J. Wang et al., Cryogenic system design for HIAF iLinac. Nucl. Sci. Tech. 30, 178 (2019). https://doi.org/10.1007/s41365-019-0700-5

    Article  Google Scholar 

  10. G.F. Qu, W.P. Chai, J.W. Xia et al., Two-plane painting injection scheme for BRing of HIAF. Nucl. Sci. Tech. 28, 114 (2017). https://doi.org/10.1007/s41365-017-0260-5

    Article  Google Scholar 

  11. J.H. Liu, Z. Ge, Q. Wang et al., Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and a new scheme for mass measurements at HIAF. Nucl. Sci. Tech. 30, 152 (2019). https://doi.org/10.1007/s41365-019-0676-1

    Article  Google Scholar 

  12. L.J. Mao, J.C. Yang, J.W. Xia et al., Electron cooling system in the booster synchrotron of the HIAF project. Nucl. Instrum. Methods B 786, 91–96 (2015). https://doi.org/10.1016/j.nima.2015.03.052

    Article  Google Scholar 

  13. M.I. Bryzgunov, A.V. Ivanov, V.M. Panasyuk et al., Efficiency improvement of an electron collector intended for electron cooling systems using a Wien filter. Technical. Phys. 58(6), 911–918 (2013). https://doi.org/10.1134/S1063784213060078

    Article  ADS  Google Scholar 

  14. A. Shih, C. Hor, Secondary emission properties as a function of the electron incidence angle. IEEE Trans. Electron Devices 40(4), 824–829 (1993). https://doi.org/10.1109/16.202797

    Article  ADS  Google Scholar 

  15. M.A. Furman, M.T.F. Pivi, Probabilistic model for simulation of secondary electron emissions. Phys. Rev. ST Accel. Beams 5, 124404 (2002). https://doi.org/10.1103/PhysRevSTAB.5.124404

    Article  ADS  Google Scholar 

  16. W.X. Gui, Principle of Ion Accelerator (Atomic Energy Press, Beijing, 1984), pp. 14–15. (in Chinese)

    Google Scholar 

  17. R. Shimizu, Z.J. Ding, Monte Carlo modelling of electron-solid interactions. Rep. Prog. Phys. 55, 487–531 (1992)

    Article  ADS  Google Scholar 

  18. Z.J. Ding, R. Shimizu, A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning 18, 92 (1996). https://doi.org/10.1002/sca.1996.4950180204

    Article  Google Scholar 

  19. Z. Czyżewski, D.O. MacCallum, A. Romig et al., Calculations of Mott scattering cross section. J. Appl. Phys. 68, 3066 (1990). https://doi.org/10.1063/1.346400

    Article  ADS  Google Scholar 

  20. Y. Yamazaki, PhD thesis, Osaka University, 1977. https://ir.library.osaka-u.ac.jp/repo/ouka/all/1501/04275\_%E8%AB%96%E6%96%87.pdf

  21. Z.J. Ding, PhD thesis, Osaka University, 1990. https:https://ir.library.osaka-u.ac.jp/repo/ouka/all/37524/09380\_%E8%A6%81%E6%97%A8.pdf

  22. S. Adachi, Handbook on Optical Constants of Metals (World Scientific Publishing Co. Pte. Ltd, Singapore, 2012)

    Book  Google Scholar 

  23. D.C. Joy, UTK Metrology Group. http://web.utk.edu/~srcutk/htm/interact.htm

  24. L. Reimer, Scanning Electron Microscopy, Springer. (Physics of Image Formation and Microanalysis, 1998)

  25. J. Wagner, W. Stummer, M. Volkerer et al., Measuring the angular dependent energy distribution of backscattered electrons at variable geometry. Scanning 27, 298–304 (2005). https://doi.org/10.1002/sca.4950270605

    Article  Google Scholar 

  26. E.S.M. Ali, D.W.O. Rogers, Energy spectra and angular distributions of charged particles backscattered from solid targets. J. Phys. D Appl. Phys. 41, 055505 (2008). https://doi.org/10.1088/0022-3727/41/5/055505

    Article  ADS  Google Scholar 

  27. A.N. Sharapa, A.V. Shemyakin, Secondary electron current loss in electron cooling devices. Nucl. Instrum. Methods A 351, 295–299 (1994). https://doi.org/10.1016/0168-9002(94)91356-0

    Article  ADS  Google Scholar 

  28. V.V. Parkhomchuk, Development of a new generation of coolers with a hollow electron beam and electrostatic bending. AIP Conf. Proc. 821, 249 (2006). https://doi.org/10.1063/1.2190119

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mei-Tang Tang, Li-Jun Mao, and Jei Li. The first draft of the manuscript was written by Mei-Tang Tang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li-Jun Mao.

Additional information

This work was supported by the International Partnership Program of the Chinese Academy of Sciences (No. 113462KYSB20170051), the National Natural Science Foundation of China (No. 11575264), and the National Key \(R \& D\) Program of China (No. 2019YFA0405400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, MT., Mao, LJ., Lu, HJ. et al. Design of an efficient collector for the HIAF electron cooling system. NUCL SCI TECH 32, 116 (2021). https://doi.org/10.1007/s41365-021-00949-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00949-0

Keywords

Navigation