Skip to main content
Log in

Screener3D: a gaseous time projection chamber for ultra-low radioactive material screening

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In experiments searching for rare signals, background events from the detector itself are some of the major factors limiting search sensitivity. Screening for ultra-low radioactive detector materials is becoming ever more essential. We propose to develop a gaseous time projection chamber (TPC) with a Micromegas readout for radio screening. The TPC records three-dimensional trajectories of charged particles emitted from a flat sample placed in the active volume of the detector. The detector can distinguish the origin of an event and identify the particle types with information from trajectories, which significantly increases the screening sensitivity. For α particles from the sample surface, we observe that our proposed detector can reach a sensitivity higher than 100 μ Bq m−2 within two days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. DellOro, S. Marcocci, M. Viel et al., Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys 2016, 2162659 (2016). https://doi.org/10.1038/10.1155/2016/2162659

    Article  Google Scholar 

  2. L. Roszkowski, E.M. Sessolo, S. Trojanowski, WIMP dark matter candidates and searches-current status and future prospects. Rept. Prog. Phys 81(6), 066201 (2018). https://doi.org/10.1088/1361-6633/aab913

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Liu, X. Chen, X. Ji, Current status of direct dark matter detection experiments. Nat. Phys. 13(3), 212–216 (2017). https://doi.org/10.1038/nphys4039

    Article  Google Scholar 

  4. J.-P. Cheng, K.-J. Kang, J.-M. Li et al., The China Jinping underground laboratory and its early science. Ann. Rev. Nucl. Part. Sci 67, 231–251 (2017). https://doi.org/10.1146/annurev-nucl-102115-044842

    Article  ADS  Google Scholar 

  5. N. Abgrall, I.J. Arnquist, F.T. Avignone III. et al., The Majorana Demonstrator radioassay program. Nucl. Instrum. Meth. A 828, 22–36 (2016). https://doi.org/10.1016/j.nima.2016.04.070

    Article  ADS  Google Scholar 

  6. D.S. Akerib, H.M. Araújo, X. Bai et al., Radiogenic and Muon-induced backgrounds in the LUX Dark matter detector. Astropart. Phys. 62, 33–46 (2015). https://doi.org/10.1016/j.astropartphys.2014.07.009

    Article  ADS  Google Scholar 

  7. F. Alessandria, E. Andreotti, R. Ardito et al., CUORE crystal validation runs: results on radioactive contamination and extrapolation to CUORE background. Astropart. Phys. 35, 839–849 (2012). https://doi.org/10.1016/j.astropartphys.2012.02.008

    Article  ADS  Google Scholar 

  8. H. Jiang, L.P. Jia, Q. Yue et al., Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg x day Data of the CDEX-10 Experiment. Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.120.241301

    Article  Google Scholar 

  9. D.S. Leonard, P. Grinberg, P. Weber et al., Systematic study of trace radioactive impurities in candidate construction materials for EXO-200. Nucl. Instrum. Meth. A 591, 490–509 (2008). https://doi.org/10.1016/j.nima.2008.03.001

    Article  ADS  Google Scholar 

  10. X. Wang, X. Chen, C. Fu et al., Material screening with HPGe counting station for PandaX experiment. JINST 11(12), T12002 (2016). https://doi.org/10.1088/1748-0221/11/12/T12002

    Article  ADS  Google Scholar 

  11. X. Guan, L. Ge, G. Zeng et al., Determination of gross α and β activities in Zouma River based on online HPGe gamma measurement system. Nucl. Sci. Tech. 31(12), 120 (2020). https://doi.org/10.1007/s41365-020-00828-0

    Article  Google Scholar 

  12. L. Yin, Q. Tian, X. Shao et al., ICP-MS measurement of uranium and thorium contents in minerals in China. Nucl. Sci. Tech. 27(1), 10 (2016). https://doi.org/10.1007/s41365-016-0018-5

    Article  Google Scholar 

  13. C. Alduino, K. Alfonso, D.R. Artusa et al., Measurement of the two-neutrino double-beta decay half-life of 130Te with the CUORE-0 experiment. Eur. Phys. J. C 77(1), 13 (2017). https://doi.org/10.1140/epjc/s10052-016-4498-6

    Article  ADS  Google Scholar 

  14. H. Zhang, H.G. Zhang, A. Abdukerim et al., Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China Phys. Mech. Astron. 62(3), 31011 (2019). https://doi.org/10.1007/s11433-018-9259-0

    Article  ADS  Google Scholar 

  15. Ortec detectors. https://www.ortec-online.com/products/radiation-detectors/

  16. P. Loaiza, A.S. Barabash, A. Basharina-Freshville et al., The BiPo-3 detector. Appl. Radiat. Isot 123, 28242294 (2017). https://doi.org/10.1016/j.apradiso.2017.01.021

    Article  Google Scholar 

  17. A.S. Barabash, A. Basharina-Freshville, E. Birdsall et al., The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials. J. Instrum. 12, P06002 (2017). https://doi.org/10.1088/1748-0221/12/06/p06002

    Article  Google Scholar 

  18. XIA Ultralo 1800 gas counter. https://xia.com/ultralo.html

  19. R. Bunker, Z. Ahemd, M.A. Bowles et al., The BetaCage, an Ultra-Sensitive screener for surface contamination. AIP Conf. Proc. 1549, 132–35 (2013). https://doi.org/10.1063/1.4818093

    Article  ADS  Google Scholar 

  20. H. Ito, T. Hashimoto, K. Miuchi et al., Development of an alpha-particle imaging detector based on a low radioactive micro-time-projection chamber. Nucl. Instrum. Meth. A. 953, 163050 (2020). https://doi.org/10.1016/j.nima.2019.163050

    Article  Google Scholar 

  21. S. Andriamonje, D. Attie, E. Berthoumieux at el., Development and performance of Microbulk Micromegas detectors. J. Instrum. 4, 02001 (2010). https://doi.org/10.1088/1748-0221/5/02/p02001

    Article  Google Scholar 

  22. L. Yang, J. Xu, Q. Li et al., Performance of the CAT-TPC based on two-dimensional readout strips. Nucl. Sci. Tech. 32, 85 (2021). https://doi.org/10.1007/s41365-021-00919-6

    Article  Google Scholar 

  23. X. Chen, F. Fu, J. Galan et al., PandaX-III: searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers. Sci. China Phys. Mech. Astron. 60, 061011 (2017). https://doi.org/10.1007/s11433-017-9028-0

    Article  ADS  Google Scholar 

  24. COMSOL. https://www.comsol.com

  25. X. Yan, X. Chen, Y. Chen et al., Slow control system for PandaX-III experiment. JINST 16(05), T05004 (2021). https://doi.org/10.1088/1748-0221/16/05/t05004

    Article  ADS  Google Scholar 

  26. J. Castel, I. Coarasa, T. Dafni et al., Background assessment for the TREX dark matter experiment. Eur. Phys. J. C. 79, 782 (2019). https://doi.org/10.1140/epjc/s10052-019-7282-6

    Article  ADS  Google Scholar 

  27. S. Agostinelli, J. Allison, K. Amako et al., (GEANT4 Collaboration), GEANT4: a Simulation toolkit. Nucl. Instrum. Meth. A. 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  28. D. Budjá, A.M. Gangapshev, J. Gasparro et al., Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment. Appl. Radiat. Isot. 67(5), 755–758 (2009). https://doi.org/10.1016/j.apradiso.2009.01.019

    Article  Google Scholar 

  29. P. Agnes, L. Agostino, I.F.M. Albuquerque et al., Results from the first use of low radioactivity argon in a dark matter search. Phys. Rev. D 93(8), 081101 (2016). https://doi.org/10.1103/PhysRevD.93.081101

    Article  ADS  Google Scholar 

  30. H. Simgen, G. Zuzel, Analysis of the 222Rn concentration in argon and a purification technique for gaseous and liquid argon. Appl. Radiat. Isot. 67(5), 922–925 (2009). https://doi.org/10.1016/j.apradiso.2009.01.058 (Epub 2009 PMID: 19251429)

    Article  Google Scholar 

  31. C.Y. Cao, N. Li, X.Y. Yang et al., A practical approach of high precision U and Th concentration measurement in acrylic. Nucl. Instrum. Meth. A 1004, 165377 (2021). https://doi.org/10.1016/j.nima.2021.165377

    Article  Google Scholar 

  32. F. Alessandria, R. Ardito, D.R. Artusa et al., Validation of techniques to mitigate copper surface contamination in CUORE. Astrop. Phys. 45, 13–22 (2013). https://doi.org/10.1016/j.astropartphys.2013.02.005

    Article  ADS  Google Scholar 

  33. J. Galan, X. Chen, H. Du et al., Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment. J. Phys. G Nucl. Part. Phys. 47, 045108 (2020). https://doi.org/10.1088/1361-6471/ab4dbe

    Article  ADS  Google Scholar 

  34. X. Chen, C.B. Fu, J. Galan et al., PandaX-III: searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers. Sci. China Phys. Mech. Astron. 60, 061011 (2017). https://doi.org/10.1007/s11433-017-9028-0

    Article  ADS  Google Scholar 

  35. R. Veenhof, Garfield-simulation of gaseous detectors. http://garfield.web.cern.ch/garfield/

  36. G.J. Feldman, R.D. Cousins, Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 57, 3873 (1998). https://doi.org/10.1103/PhysRevD.57.3873

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hai-Yan Du and Ke Han. The first draft of the manuscript was written by Hai-Yan Du and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ke Han.

Additional information

This work was supported by the Ministry of Science and Technology of China (No. 2016YFA0400302), the National Natural Sciences Foundation of China (Nos. 11775142 and U1965201), and the Chinese Academy of Sciences Center for Excellence in Particle Physics (CCEPP).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, HY., Du, CB., Giboni, K. et al. Screener3D: a gaseous time projection chamber for ultra-low radioactive material screening. NUCL SCI TECH 32, 142 (2021). https://doi.org/10.1007/s41365-021-00983-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00983-y

Keywords

Navigation