Skip to main content
Log in

ICP-MS measurement of uranium and thorium contents in minerals in China

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The activity levels of long-lived radionuclides in minerals have received more and more concern for the public health. The inductively coupled plasma mass spectrometry was used to measure the content of uranium and thorium in 60 mineral samples collected from 16 mines of seven provinces in China. The contents of uranium and thorium ranged 0.17 ± 0.04 μg g−1 to 15.3 ± 2.39 μg g−1, and 0.19 ± 0.04 μg g−1 to 19.6 ± 7.56 μg g−1, respectively. The highest levels of U and Th contents were found in aluminum ore, whereas the lowest was found in antimony and copper ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Commission, Practical Use of the Concepts of Clearance and Exemption—Part II: Application of the Concepts of Exemption and Clearance to Natural Radiation Sources. Radiation Protection 122 (2001), p 7

  2. Health Canada, Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM), 2011, p 2

  3. E.M. Pontedeiro, P.F.L. Heilbron, R.M. Cotta, Assessment of the mineral industry NORM/TENORM disposal in hazardous landfills. J. Hazard. Mater. 139, 563–568 (2007). doi:10.1016/j.jhazmat.2006.02.063

    Article  Google Scholar 

  4. M.D. Taylor, Accumulation of uranium in soils from impurities in phosphate fertilizers. Landbauforsch Volk 57, 133–139 (2007)

    Google Scholar 

  5. J.J. Luo, Q.H. Sun, Regulation of NORM TENORM exposure in some countries. Radiat. Prot. Bull. 29(3), 4–12 (2009). doi:10.3969/j.issn.1004-6356.2009.03.002

    Google Scholar 

  6. M.E. Emirhan, C.S. Ozben, Assessment of radiological risk factors in the Zonguldak coal mines, Turkey. J. Radiol. Prot. 29, 527–534 (2009). doi:10.1088/0952-4746/29/4/007

    Article  Google Scholar 

  7. M. Gavrilescu, L.V. Pavel, I. Cretescu, Characterization and remediation of soils contaminated with uranium. J. Hazard. Mater. 163, 475–510 (2009). doi:10.1016/j.jhazmat.2008.07.103

    Article  Google Scholar 

  8. A. Kumar, A. Kumar, Y. Singh et al., Radioactivity measurements in the environment of the Udhampur area Jammu and Kashmir Himalayas, India. Radiat. Effects Defects Solids 164, 719–725 (2009). doi:10.1080/10420150903092280

    Article  Google Scholar 

  9. S. Singh, D.K. Sharma, S. Dhar et al., Uranium, Radium and Radon measurements in the environs of Nurpur area, Himachal Himalayas, India. Environ. Monit. Assess. 128, 301–309 (2007). doi:10.1007/s10661-006-9313-7

    Article  Google Scholar 

  10. J.H. Lubin, Y.L. Qiao, P.R. Taylor et al., Quantitative evaluation of the radon and lung cancer association in a case control study of Chinese tin miners. Cancer Res. 50(N1), 174–180 (1990). doi:10.1016/0169-5002(90)90140-H

    Google Scholar 

  11. Z.Y. Gu, D. Lai, T.S. Liu et al., Weathering histories of Chinese loess Ddeposits based on uranium and thorium series nuclides and cosmogenic 10Be. Geochim. Cosmochim. Acta 61, 5221–5231 (1997). doi:10.1016/S0016-7037(97)00313-X

    Article  Google Scholar 

  12. P. Schramel, I. Wendler, P. Roth et al., Method for the determination of thorium and uranium in urine by ICP-MS. Mikrochim. Acta 126, 263–266 (1997). doi:10.1007/BF01242331

    Article  Google Scholar 

  13. A.M. Arogunjo, V. Höllriegl, A. Giussani et al., Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity. J. Environ. Radioact. 100, 232–240 (2009). doi:10.1016/j.jenvrad.2008.12.004

    Article  Google Scholar 

  14. B.U. Chang, S.M. Koh, Y.J. Kim et al., Nationwide survey on the natural radionuclides in industrial raw minerals in South Korea. J. Environ. Radioact. 99, 455–460 (2008). doi:10.1016/j.jenvrad.2007.08.020

    Article  Google Scholar 

  15. A.E. Kelepertsis, The geochemistry of uranium and thorium in some lower carboniferous sedimentary rocks (Great Britain). Chem. Geol. 34, 275–288 (1981). doi:10.1016/0009-2541(81)90117-0

    Article  Google Scholar 

  16. E.M. El Afifi, M.A. Hilal, S.M. Khalifa et al., Evaluation of U, Th, K and emanated radon in some NORM and TENORM samples. Radiat. Meas. 41, 627–633 (2006). doi:10.1016/j.radmeas.2005.09.014

    Article  Google Scholar 

  17. S. Turhan, L. Gunduz, Determination of specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from Turkish pumice samples. J. Environ. Radioact. 99, 332–342 (2008). doi:10.1016/j.jenvrad.2007.08.022

    Article  Google Scholar 

  18. M.I. Nagdya, Radioactive disequilibrium in the different rock types in Wadi Wizr, the Eastern Desert of Egypt. Appl. Radiat. Isot. 58, 385–392 (2003). doi:10.1016/S0969-8043(02)00242-7

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the Chinese Ministry of Science and Technology (Grant Nos. 2005DIB1J087, 2013BAK03B00). The authors thank Center for Disease Control and Prevention in provinces of Yunnan, Ningxia, Guizhou, Xinjiang and Heilongjiang; Hunan Prevention and Treatment Center for Occupational Diseases; and Shandong Radiation Medical Institutes of Shandong Academy of Medical Science for collecting samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Qin Ji.

Additional information

Liang-Liang Yin, Qing Tian, Xian-Zhang Shao, Bao-Ming Shen, Xu Su and Yan-Qin Ji have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, LL., Tian, Q., Shao, XZ. et al. ICP-MS measurement of uranium and thorium contents in minerals in China. NUCL SCI TECH 27, 10 (2016). https://doi.org/10.1007/s41365-016-0018-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0018-5

Keywords

Navigation