Skip to main content

Advertisement

Log in

Neutronic analysis of deuteron-driven spallation target

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Deuteron-driven spallation targets have garnered attention recently because they can provide high-energy neutrons to transmute long-lifetime fission products. In this study, the Geant4 toolkit was used to simulate the interaction between a deuteron beam at 500 MeV and a composite target composed of alternating lead-bismuth eutectic (LBE) and water. The water was used because it may be employed as a target coolant. The energy spectrum, neutron yield, average energy, and total energy of the emitted neutrons were calculated for different thicknesses and thickness ratios between the LBE and water. For a constant target thickness, the neutron yield increases with an increasing thickness ratio of LBE to \(\hbox {H}_2\hbox {O}\), while the average energy of the emitted neutrons decreases with an increasing in the aforementioned thickness ratio . These two aspects support the use of a pure target, either LBE or water. However, with an increasing LBE-to-\(\hbox {H}_2\hbox {O}\) thickness ratio, the total energy of the emitted neutrons increases and then decreases. This result supports the addition of water into the LBE target. The angular distributions of the emitted neutrons show that the rear of the target is suitable for loading nuclear waste containing minor actinides and long-lifetime fission products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.D. MacDonald, Safe and secure—environmental effects of nuclear power plants and the nuclear fuel cycle. IEEE Power Energy Mag. 4, 49–55 (2006). https://doi.org/10.1109/PAE-M.2006.247870

    Article  Google Scholar 

  2. W.L. Zhan, H.S. Xu, Advanced fission energy program-ads transmutation system. Bull. Chin. Acad. Sci. 27, 375–381 (2012). https://doi.org/10.3969/j.issn.1000-3045.2012.03.017

    Article  Google Scholar 

  3. B. Grambow, C. Landesman, S. Ribet, Nuclear waste disposal: I. Laboratory simulation of repository properties. Appl. Geochem. 49, 237–246 (2014). https://doi.org/10.1016/j.apgeochem.2014.05.017

    Article  Google Scholar 

  4. H. Kunreuther, D. Easterling, W. Desvousges et al., Public attitudes toward siting a high-level nuclear waste repository in nevada. Risk Anal. 10, 469–484 (1990). https://doi.org/10.1111/j.1539-6924.1990.tb00533.x

    Article  Google Scholar 

  5. C. McCombie, Nuclear waste management worldwide. Phys. Today 50, 56–62 (1997). https://doi.org/10.1063/1.881779

    Article  Google Scholar 

  6. C. Fairhurst, Nuclear waste disposal and rock mechanics: contributions of the underground research laboratory (URL), pinawa, manitoba, canada. Int. J. Rock Mech. Min. Sci. 41, 1221–1227 (2004). https://doi.org/10.1016/j.ijrmms.2004.09.001

    Article  Google Scholar 

  7. F. Venneri, M.A. Williamson, N. Li et al., Disposition of nuclear waste using subcritical accelerator-driven systems: technology choices and implementation scenarios. Nucl. Technol. 132, 15–29 (2000). https://doi.org/10.13182/nt00-a3126

    Article  Google Scholar 

  8. Z.Q. Chen, Recent progress in nuclear data measurement for ADS at IMP. Nucl. Sci. Tech. 28, 184 (2017). https://doi.org/10.1007/s41365-017-0335-3

    Article  Google Scholar 

  9. P. Yang, Z.K. Lin, W.S. Wan et al., Preliminary neutron study of a thorium-based molten salt energy amplifier. Nucl. Sci. Tech. 31, 41 (2020). https://doi.org/10.1007/s41365-020-0750-8

    Article  Google Scholar 

  10. H. Abderrahim, P. Kupschus, E. Malambu et al., MYRRHA: a multipurpose accelerator driven system for research & development. Nucl. Instrum. Methods Phys. Res. Sect. A 463, 487–494 (2001). https://doi.org/10.1016/s0168-9002(01)00164-4

    Article  ADS  Google Scholar 

  11. H. Nifenecker, S. David, J. Loiseaux et al., Basics of accelerator driven subcritical reactors. Nucl. Instrum. Methods Phys. Res. Sect. A 463, 428–467 (2001). https://doi.org/10.1016/S0168-9002(01)00160-7

    Article  ADS  Google Scholar 

  12. K. Tsujimoto, T. Sasa, K. Nishihara et al., Neutronics design for lead-bismuth cooled accelerator-driven system for transmutation of minor actinide. J. Nucl. Sci. Technol. 41, 21–36 (2004). https://doi.org/10.1080/18811248.2004.9715454

    Article  Google Scholar 

  13. H.Y. Meng, Y.W. Yang, Z.L. Zhao et al., Physical studies of minor actinide transmutation in the accelerator-driven subcritical system. Nucl. Sci. Tech. 30, 91 (2019). https://doi.org/10.1007/s41365-019-0623-1

    Article  Google Scholar 

  14. C.D. Bowman, Accelerator-driven systems for nuclear waste transmutation. Annu. Rev. Nucl. Part. Sci. 48, 505–556 (1998). https://doi.org/10.1146/annurev.nucl.48.1.505

    Article  ADS  Google Scholar 

  15. K. Tsujimoto, H. Oigawa, N. Ouchi et al., Research and development program on accelerator driven subcritical system in JAEA. J. Nucl. Sci. Technol. 44, 483–490 (2007). https://doi.org/10.1080/18811248.2007.9711312

    Article  Google Scholar 

  16. D.E. Beller, Overview of the AFCI reactor-accelerator coupling experiments (race) project. Trans.-Am. Nucl. Soc. 90, 333–334 (2004)

    Google Scholar 

  17. D.D. Bruyn, H.A. Abderrahim, P. Baeten et al., The MYRRHA ADS project in Belgium enters the front end engineering phase. Phys. Proc. 66, 75–84 (2015). https://doi.org/10.1016/j.phpro.2015.05.012

    Article  ADS  Google Scholar 

  18. T. Sasa, H. Oigawa, K. Tsujimoto et al., Research and development on accelerator-driven transmutation system at JAERI. Nucl. Eng. Des. 230, 209–222 (2004). https://doi.org/10.1016/j.nucengdes.2003.11.033

    Article  Google Scholar 

  19. Z. Wang, Y. He, G. Huang, et al., in 10th International Particle Accelerator Conference, The status of ciads superconducting linac. JACOW Publishing, Geneva, Switzerland, 2019. https://doi.org/10.18429/JACoW-IPAC2019-MOPTS059

  20. Z.L. Zhao, Y.W. Yang, H.Y. Meng et al., Preparation and verification of mixed high-energy neutron cross-section library for ADS. Nucl. Sci. Tech. 29, 140 (2018). https://doi.org/10.1007/s41365-018-0487-9

    Article  Google Scholar 

  21. Z.Q. Liu, Z.L. Zhao, Y.W. Yang et al., Development and validation of depletion code system IMPC-burnup for ADS. Nucl. Sci. Tech. 30, 44 (2019). https://doi.org/10.1007/s41365-019-0560-z

    Article  ADS  Google Scholar 

  22. A.A.A. Qaaod, V. Gulik, 226ra irradiation to produce 225ac and 213bi in an accelerator-driven system reactor. Nucl. Sci. Tech. 31, 44 (2020). https://doi.org/10.1007/s41365-020-00753-2

    Article  Google Scholar 

  23. Z.L. Zhao, Y.W. Yang, S. Hong, Application of FLUKA and OpenMC in coupled physics calculation of target and subcritical reactor for ADS. Nucl. Sci. Tech. 30, 10 (2019). https://doi.org/10.1007/s41365-018-0539-1

    Article  ADS  Google Scholar 

  24. G. Bauer, Overview on spallation target design concepts and related materials issues. J. Nucl. Mater. 398, 19–27 (2010). https://doi.org/10.1016/j.jnucmat.2009.10.005

    Article  ADS  Google Scholar 

  25. F. Heidet, N.R. Brown, M.H. Tahar, Accelerator–reactor coupling for energy production in advanced nuclear fuel cycles. Rev. Accel. Sci. Technol. 08, 99–114 (2015). https://doi.org/10.1142/s1793626815300066

    Article  Google Scholar 

  26. A. Class, D. Angeli, A. Batta et al., XT-ADS windowless spallation target thermohydraulic design & experimental setup. J. Nucl. Mater. 415, 378–384 (2011). https://doi.org/10.1016/j.jnucmat.2011.04.050

    Article  ADS  Google Scholar 

  27. H.A. Abderrahim, P. D’Hondt, MYRRHA: A European experimental ADS for R & D applications status at mid-2005 and prospective towards implementation. J. Nucl. Sci. Technol. 44, 491–498 (2007). https://doi.org/10.1080/18811248.2007.9711313

  28. K. Chen, Y. Yang, D. Fan et al., Thermal hydraulic studies of lead–bismuth eutectic spallation target of CIADS. Nucl. Eng. Des. 305, 672–677 (2016). https://doi.org/10.1016/j.nucengdes.2016.06.025

    Article  Google Scholar 

  29. L. Yang, W. Zhan, New concept for ADS spallation target: gravity-driven dense granular flow target. Sci. China Technol. Sci. 58, 1705–1711 (2015). https://doi.org/10.1007/s11431-015-5894-0

    Article  ADS  Google Scholar 

  30. Q. Zhao, W. Cui, Z. He et al., Energy deposition and neutron flux study in a gravity-driven dense granular target (DGT) with GEANT4 toolkit. Nucl. Instrum. Methods Phys. Res. Sect. B 427, 63–69 (2018). https://doi.org/10.1016/j.nimb.2018.04.045

    Article  ADS  Google Scholar 

  31. Q. Zhao, X.Y. Zhang, W.J. Cui et al., Numerical study on the inner temperature measurement for the target in CiADS. Nucl. Instrum. Methods Phys. Res. Sect. B 432, 37–41 (2018). https://doi.org/10.1016/j.nimb.2018.07.017

    Article  ADS  Google Scholar 

  32. Y.L. Zhang, X.C. Zhang, J. Qi et al., Study on the parameters of the ADS spallation target. J. Phys. Conf. Ser. 420, 012064 (2013). https://doi.org/10.1088/1742-6596/420/1/012064

    Article  Google Scholar 

  33. A. Krasa, V. Wagner, M. Majerle et al., Neutron production in a pb/u-setup irradiated with 0.7–2.5 gev protons and deuterons. Nucl. Instrum. Methods Phys. Res. Sect. A. Detect. Assoc. Equip. 615, 70–77 (2010). https://doi.org/10.1016/j.nima.2010.01.029

    Article  ADS  Google Scholar 

  34. J. Adam, V. Chilap, V. Furman et al., Study of secondary neutron interactions with 232th, 129i, and 127i nuclei with the uranium assembly “quinta”at 2, 4, and 8 gev deuteron beams of the jinr nuclotron accelerator. Appl. Radiat. Isot. 107, 225–233 (2016). https://doi.org/10.1016/j.apradiso.2015.11.002

  35. Y. Malyshkin, I. Pshenichnov, I. Mishustin et al., Neutron production and energy deposition in fissile spallation targets studied with geant4 toolkit. Nucl. Instrum. Methods Phys. Res. Sect. B 289, 79–90 (2012). https://doi.org/10.1016/j.nimb.2012.07.023

    Article  ADS  Google Scholar 

  36. A. Lamrabet, A. Maghnouj, J. Tajmouati et al., Assessment of the power deposition on the megapie spallation target using the geant4 toolkit. Nucl. Sci. Tech. 30, 54 (2019). https://doi.org/10.1007/s41365-019-0590-6

    Article  Google Scholar 

  37. S. Lee, C. Bungau, R. Cywinski, in 7th International Particle Accelerator Conference IPAC2016, Geant4 simulations of proton-induced spallation for applications in ADSR systems (2016) https://doi.org/10.1007/s41365-019-0590-6

  38. A. Koning, D. Rochman, Modern nuclear data evaluation with the talys code system. Nucl. Data Sheets 113, 2841–2934 (2012). https://doi.org/10.1016/j.nds.2012.11.002

    Article  ADS  Google Scholar 

  39. M. Chadwick, M. Herman, P. Obložinský et al., Endf/b-vii.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011). https://doi.org/10.1016/j.nds.2011.11.002

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Wei-Wei Qiu, Wu Sun, and Jun Su. The first draft of the manuscript was written by Wei-Wei Qiu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jun Su.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11875328).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, WW., Sun, W. & Su, J. Neutronic analysis of deuteron-driven spallation target. NUCL SCI TECH 32, 94 (2021). https://doi.org/10.1007/s41365-021-00932-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00932-9

Keywords

Navigation