Skip to main content
Log in

226Ra irradiation to produce 225Ac and 213Bi in an accelerator-driven system reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

This study aims to produce 229Th using an innovative nuclear reactor concept, i.e., accelerator-driven system (ADS) reactor. Herein, we investigated the feasibility of producing 229Th from neutron transmutation of 226Ra to expand the availability of 225Ac and 213Bi in a simple model of ADS reactor. ADS reactor comprises two zones, i.e., an inner zone with a fast neutron spectrum and outer zone with thermal neutron spectrum, which is a subcritical core coupled with an external neutron source. Transmutation behavior, activity, and mass ratio of the obtained isotopes were investigated using the Monte-Carlo tool. In addition with offering the capability, flexibility, and safety of radioactive waste transmutation, the proposed ADS model provides high 229Th yield and requires less time than a critical reactor with the same neutron flux and irradiated quantity of 226Ra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Doble et al. Application of radioisotopes in personalized medicine. Int. J. Pharm. Life Sci. 10(3), 20 (2019)

    Google Scholar 

  2. J.W. Weidner, S.G. Mashnik, K.D. John et al., 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets. Appl. Radiat. Isot. 70, 2590–2595 (2012). https://doi.org/10.1016/j.apradiso.2012.07.003

    Article  Google Scholar 

  3. J.R. Griswold, D.G. Medvedev, J.W. Engle et al., Large scale accelerator production of 225Ac: effective cross sections for 78–192 MeV protons incident on 232Th targets. Appl. Radiat. Isot. 118, 366–374 (2016). https://doi.org/10.1016/j.apradiso.2016.09.026

    Article  Google Scholar 

  4. J.N.C. Van Geel, J.J. Fuger, L. Koch. “Method for producing actinium-225 and bismuth-213.” U.S. Patent No. 5,355,394. 11 Oct. 1994. https://patents.google.com/patent/US5355394A/en

  5. S. Hogle, R.A. Boll, K. Murphy et al., Reactor production of Thorium-229. Appl. Radiat. Isot. 114, 19–27 (2016). https://doi.org/10.1016/j.apradiso.2016.05.002

    Article  Google Scholar 

  6. D. De Bruyn, H.A. Abderrahim, P. Baeten et al., The MYRRHA ADS project in Belgium enters the front end engineering phase. Phys. Procedia 66, 75–84 (2015). https://doi.org/10.1016/j.phpro.2015.05.012

    Article  Google Scholar 

  7. H.A. Abderrahim, P. Baeten, D. De Bruyn et al., MYRRHA–A multi-purpose fast spectrum research reactor. Energy Convers. Manag. 63, 4–10 (2012). https://doi.org/10.1016/j.enconman.2012.02.025

    Article  Google Scholar 

  8. C. Rubbia, C. Roche, J.P. Revol, et al. Conceptual design of a fast neutron operated high power energy amplifier. No. CERN-AT-95-44-ET. (1995). https://cds.cern.ch/record/289551/files/cer-0210391.pdf

  9. C.D. Bowman, E.D. Arthur, P.W. Lisowski et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nucl. Instrum. Methods A 320, 336–367 (1992). https://doi.org/10.1016/0168-9002(92)90795-6

    Article  Google Scholar 

  10. A.A. Al Qaaod, H. Shahbunder, R.M. Refeat et al., Transmutation performance of uniform and nonuniform distributions of plutonium and minor actinides in TRIGA Mark II ADS reactor. Ann. Nuclear Energy 121, 101–107 (2018). https://doi.org/10.1016/j.anucene.2018.07.012

    Article  Google Scholar 

  11. H. Shahbunder, A.A. Al Qaaod, E.A. Amin et al., Effects of Pu and MA uniform and nonuniform distributions on subcritical multiplication of TRIGA Mark II ADS reactor. Ann. Nucl. Energy 94, 332–337 (2016). https://doi.org/10.1016/j.anucene.2016.03.016

    Article  Google Scholar 

  12. H.M. Al-Ssalahy, A.A. Al Qaaod, S.U. El-Kameesy et al., Evaluation of subcritical multiplication parameters in MYRRHA-FASTEF accelerator driven system reactor. J. Phys: Conf. Ser. 1253, 8 (2019). https://doi.org/10.1088/1742-6596/1253/1/012028

    Article  Google Scholar 

  13. M. Salvatores, Accelerator driven systems (ADS), physics principles and specificities. Le Journal de Physique IV (1999). https://doi.org/10.1051/jp4:1999702

    Article  Google Scholar 

  14. C. Rubbia, J. Aleixandre, S. Andriamonje. A European roadmap for developing accelerator driven systems (ADS) for nuclear waste incineration. ENEA Report 88 (2001)

  15. W.M. Stacey, Z. Abbasi, C.J. Boyd et al., A subcritical, helium-cooled fast reactor for the transmutation of spent nuclear fuel. Nucl. Technol. 156, 99–123 (2006). https://doi.org/10.13182/NT06-A3777

    Article  Google Scholar 

  16. A. Fokau, Y.P. Zhang, S. Ishida et al., A source efficient ADS for minor actinides burning. Ann. Nucl. Energy 37, 540–545 (2010). https://doi.org/10.1016/j.anucene.2009.12.025

    Article  Google Scholar 

  17. X.S. Yan, L. Yang, X.C. Zhang et al., Concept of an accelerator-driven advanced nuclear energy system. Energies 10, 944 (2017). https://doi.org/10.3390/en10070944

    Article  Google Scholar 

  18. M.L. Fensin, M. Umbel, Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations. Prog. Nucl. Energy 85, 719–728 (2015). https://doi.org/10.1016/j.pnucene.2015.09.001

    Article  Google Scholar 

  19. S. Lemehov, V. Sobolev, K. Govers et al. Progress and advancements in fuel performance modelling for MYRRHA/XT-ADS. No. INIS-XA–09N0647. 2009

  20. V.A. Babenko, V.I. Gulik, L.L. Jenkovszky et al., On the subcritical amplifier of neutron flux based on enriched uranium, in Nuclear Science and Safety in Europe, ed. by T. Cechák, L. Jenkovszky, I. Karpenko (Springer, Dordrecht, 2006), pp. 253–263. https://doi.org/10.1007/978-1-4020-4965-1_21

    Chapter  Google Scholar 

  21. V.O. Babenko, V. I. Gulik, and V. M. Pavlovych. The new research subcritical reactor driven by a high-intensity neutron generator for transmutation of the nuclear waste. in Proceedings of International Conference “Current Problems in Nuclear Physics and Atomic Energy”(NPAE2010). (2010)

  22. V. Gulik, A.H. Tkaczyk, Cost optimization of ADS design: comparative study of externally driven heterogeneous and homogeneous two-zone subcritical reactor systems. Nucl. Eng. Des. 270, 133–142 (2014). https://doi.org/10.1016/j.nucengdes.2014.01.007

    Article  Google Scholar 

  23. M.B. Chadwick, P. Obložinský, M. Herman et al., ENDF/B-VII. 0: next generation evaluated nuclear data library for nuclear science and technology. Nucl. Data Sheets 107, 2931–3060 (2006). https://doi.org/10.1016/j.nds.2006.11.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer A. Al Qaaod.

Additional information

This work was supported by the International Center for Theoretical Physics and the Institute of International Education’s Scholar Rescue Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Qaaod, A.A., Gulik, V. 226Ra irradiation to produce 225Ac and 213Bi in an accelerator-driven system reactor. NUCL SCI TECH 31, 44 (2020). https://doi.org/10.1007/s41365-020-00753-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00753-2

Keywords

Navigation