Skip to main content
Log in

Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A novel amidoxime-based fibrous adsorbent, denoted as PE/PP-g-(PAAc-co-PAO), was prepared by pre-irradiation grafting of acrylic acid and acrylonitrile onto polyethylene-coated polypropylene skin–core (PE/PP) fibers using 60Co γ-ray irradiation, followed by amidoximation. The original and modified PE/PP fibers were characterized by a series of characterization methods to demonstrate the attachment of amidoxime groups onto the PE/PP fibers. Breaking strength tests confirmed that the fibrous adsorbent could maintain good mechanical properties. The adsorption capacity of the PE/PP-g-(PAAc-co-PAO) fibers was investigated in simulated seawater with an initial uranium concentration of 330 μg/L. The uranium adsorption capacity was 2.27 mg/g-adsorbent after 24 h in simulated seawater, and the equilibrium data were well described by the Freundlich isotherm model. The PE/PP-g-(PAAc-co-PAO) adsorbent exhibited good regeneration and recyclability during five adsorption–desorption cycles. The adsorption test was also performed in simulated radioactive effluents with uranium concentrations of 10 and 100 μg/L. The effect of the pH value on the adsorption capacity was also studied. At a very low initial concentration 10 μg/L solution, the PE/PP-g-(PAAc-co-PAO) fiber could remove as much as 93.0% of the uranium, and up to 71.2% of the uranium in the simulated radioactive effluent. These results indicated that the PE/PP-g-(PAAc-co-PAO) adsorbent could be used in radioactive effluents over a wide range of pH values. Therefore, the PE/PP-g-(PAAc-co-PAO) fibers, with their high uranium selectivity, good regeneration and recyclability, good mechanical properties, and low cost, are promising adsorbents for extracting uranium from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Zeng, H. Zhang, Y. Sui et al., New amidoxime-based material TMP-g-AO for uranium adsorption under seawater conditions. Ind. Eng. Chem. Res. 56, 5021–5032 (2017). https://doi.org/10.1021/acs.iecr.6b05006

    Article  Google Scholar 

  2. R.T. Mayes, J. Górka, S. Dai, Impact of pore size on the sorption of uranyl under seawater conditions. Ind. Eng. Chem. Res. 55, 4339–4343 (2016). https://doi.org/10.1021/acs.iecr.5b03698

    Article  Google Scholar 

  3. N. Seko, A. Katakai, S. Hasegawa et al., Aquaculture of uranium in seawater by a fabric-adsorbent submerged system. Nucl. Technol. 144, 274–278 (2003). https://doi.org/10.13182/NT03-2

    Article  Google Scholar 

  4. S.D. Alexandratos, X. Zhu, M. Florent et al., Polymer-supported bifunctional amidoximes for the sorption of uranium from seawater. Ind. Eng. Chem. Res. 55, 4208–4216 (2016). https://doi.org/10.1021/acs.iecr.5b03742

    Article  Google Scholar 

  5. Q. Gao, J. Hu, R. Li et al., Radiation synthesis of a new amidoximated UHMWPE fibrous adsorbent with high adsorption selectivity for uranium over vanadium in simulated seawater. Radiat. Phys. Chem. 122, 1–8 (2016). https://doi.org/10.1016/j.radphyschem.2015.12.023

    Article  Google Scholar 

  6. H.B. Pan, L.J. Kuo, C.M. Wai et al., Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater. Ind. Eng. Chem. Res. 55, 4313–4320 (2015). https://doi.org/10.1021/acs.iecr.5b03307

    Article  Google Scholar 

  7. H.I. Lee, J.H. Kim, J.M. Kim et al., Application of ordered nanoporous silica for removal of uranium ions from aqueous solutions. J. Nanosci. Nanotechnol. 10, 217–221 (2010). https://doi.org/10.1166/jnn.2010.1498

    Article  Google Scholar 

  8. S. Duan, X. Liu, Y. Wang et al., Plasma surface modification of materials and their entrapment of water contaminant: a review. Plasma Process. Polym. 14, 1600218 (2017). https://doi.org/10.1002/ppap.201600218

    Article  Google Scholar 

  9. S. Duan, X. Xu, X. Liu et al., Highly enhanced adsorption performance of U (VI) by non-thermal plasma modified magnetic Fe3O4 nanoparticles. J. Colloid Interface Sci. 513, 92–103 (2018). https://doi.org/10.1016/j.jcis.2017.11.008

    Article  Google Scholar 

  10. H. Yu, S. Yang, H. Ruan et al., Recovery of U(VI) solutionss from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite. Appl. Clay Sci. 111, 67–75 (2015). https://doi.org/10.1016/j.clay.2015.01.035

    Article  Google Scholar 

  11. W. Li, L.D. Troyer, S.S. Lee et al., Engineering nanoscale iron oxides for uranyl sorption and separation: optimization of particle core size and bilayer surface coatings. ACS. Appl. Mater. Interface 9, 13163–13172 (2017). https://doi.org/10.1021/acsami.7b01042

    Article  Google Scholar 

  12. H.S. Zhu, S.X. Duan, L. Chen et al., Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution. Plasma Sci. Technol. 19, 115501 (2017). https://doi.org/10.1088/2058-6272/aa8168

    Article  Google Scholar 

  13. M. Kanno, Present status of study on extraction of uranium from sea-water. J. Nucl. Sci. Technol. 21, 1–9 (1984). https://doi.org/10.3327/jnst.21.1

    Article  Google Scholar 

  14. W.J. Williams, A.H. Gillam, Separation of uranium from seawater by adsorbing colloid flotation. Analyst 103, 1239–1243 (1978). https://doi.org/10.1039/AN9780301239

    Article  Google Scholar 

  15. L.C. Tan, Q. Liu, X.Y. Jing et al., Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem. Eng. J. 273, 307–315 (2015). https://doi.org/10.1016/j.cej.2015.01.110

    Article  Google Scholar 

  16. L.C. Tan, J. Wang, Q. Liu et al., Facile preparation of oxine functionalized magnetic Fe3O4 particles for enhanced uranium(VI) adsorption. Colloids Surf. A 466, 85–91 (2015). https://doi.org/10.1016/j.colsurfa.2014.11.020

    Article  Google Scholar 

  17. T. Kawai, K. Saito, K. Sugita et al., Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene. Ind. Eng. Chem. Res. 39, 2910–2915 (2000). https://doi.org/10.1021/ie990474a

    Article  Google Scholar 

  18. Z. Xing, J.T. Hu, M.H. Wang et al., Properties and evaluation of amidoxime-based UHMWPE fibrous adsorbent for extraction of uranium from seawater. Sci. China Chem. 56, 1504–1509 (2013). https://doi.org/10.1007/s11426-013-5002-x

    Article  Google Scholar 

  19. H.H. Zhao, X.Y. Liu, M. Yu et al., A study on the degree of amidoximation of polyacrylonitrile fibers and its effect on their capacity to adsorb uranyl ions. Ind. Eng. Chem. Res. 54, 3101–3106 (2015). https://doi.org/10.1021/ie5045605

    Article  Google Scholar 

  20. S.Y. Xie, X.Y. Liu, B.W. Zhang et al., Electrospun nanofibrous adsorbents for uranium extraction from seawater. J. Mater. Chem. A 3, 2552–2558 (2015). https://doi.org/10.1039/C4TA06120A

    Article  Google Scholar 

  21. C. Gunathilake, J. Gorka, S. Dai et al., Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J. Mater. Chem. A 3, 11650–11659 (2015). https://doi.org/10.1039/C5TA02863A

    Article  Google Scholar 

  22. A. Zhang, G. Uchiyama, T. Asakura, Dynamic-state adsorption and elution behaviour of uranium(VI) ions from seawater by a fibrous and porous adsorbent containing amidoxime chelating functional groups. Adsorpt. Sci. Technol. 21, 761–773 (2003). https://doi.org/10.1260/026361703773581812

    Article  Google Scholar 

  23. L.J. Kuo, C.J. Janke, J.R. Wood et al., Characterization and testing of amidoxime-based adsorbent materials to extract uranium from natural seawater. Ind. Eng. Chem. Res. 55, 4285–4293 (2015). https://doi.org/10.1021/acs.iecr.5b03267

    Article  Google Scholar 

  24. S. Das, C. Tsouris, C. Zhang et al., Enhancing uranium uptake by amidoxime adsorbent in seawater: an investigation for optimum alkaline conditioning parameters. Ind. Eng. Chem. Res. 55, 4294–4302 (2015). https://doi.org/10.1021/acs.iecr.5b02735

    Article  Google Scholar 

  25. Y. Oyola, S. Vukovic, S. Dai, Elution by Le Chatelier’s principle for maximum recyclability of adsorbents: applied to polyacrylamidoxime adsorbents for extraction of uranium from seawater. Dalton Trans. 45, 8532–8540 (2016). https://doi.org/10.1039/C6DT00347H

    Article  Google Scholar 

  26. T. Saito, S. Brown, S. Chatterjee et al., Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J. Mater. Chem. A 2, 14674–14681 (2014). https://doi.org/10.1039/C4TA03276D

    Article  Google Scholar 

  27. H.B. Pan, L.J. Kuo, J. Wood et al., Towards understanding KOH conditioning of amidoxime-based polymer adsorbents for sequestering uranium from seawater. RSC. Adv. 5, 100715–100721 (2015). https://doi.org/10.1039/C5RA14095A

    Article  Google Scholar 

  28. N. Seko, A. Katakai, M. Tamada et al., Fine fibrous amidoxime adsorbent synthesized by grafting and uranium adsorption-elution cyclic test with seawater. Sep. Sci. Technol. 39, 3753–3767 (2004). https://doi.org/10.1081/SS-200042997

    Article  Google Scholar 

  29. M. Tamada. Current status of technology for collection of uranium from seawater. JAEA (2009). https://doi.org/10.1142/9789814327503_0026

  30. R.V. Reis, A. Zydney, Bioprocess membrane technology. J. Membr. Sci. 297, 16–50 (2007). https://doi.org/10.1016/j.memsci.2007.02.045

    Article  Google Scholar 

  31. G.A. Tularam, M. Ilahee, Environmental concerns of desalinating seawater using reverse osmosis. J. Environ. Monit. 9, 805–813 (2007). https://doi.org/10.1039/B708455M

    Article  Google Scholar 

  32. H.J. Schenk, L. Astheimer, E.G. Witte et al., Development of sorbers for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials. Sep. Sci. Technol. 17, 1293–1308 (1982). https://doi.org/10.1080/01496398208056103

    Article  Google Scholar 

  33. J. Kim, C. Tsouris, Y. Oyola et al., Uptake of uranium from seawater by amidoxime-based polymeric adsorbent: field experiments, modeling, and updated economic assessment. Ind. Eng. Chem. Res. 53, 6076–6083 (2014). https://doi.org/10.1021/ie4039828

    Article  Google Scholar 

  34. J. Kim, Y. Oyola, C. Tsouris et al., Characterization of uranium uptake kinetics from seawater in batch and flow-through experiments. Ind. Eng. Chem. Res. 52, 9433–9440 (2013). https://doi.org/10.1021/ie400587f

    Article  Google Scholar 

  35. J. Hu, H. Ma, Z. Xing et al., Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind. Eng. Chem. Res. 55, 4118–4124 (2015). https://doi.org/10.1021/acs.iecr.5b03175

    Article  Google Scholar 

  36. H. Ma, H. Chi, J. Wu et al., A novel avenue to gold nanostructured microtubes using functionalized fiber as the ligand, the reductant, and the template. ACS. Appl. Mater. Interface 5, 8761–8765 (2013). https://doi.org/10.1021/am402574b

    Article  Google Scholar 

  37. X. Liu, J. Ao, X. Yang et al., Green and efficient synthesis of an adsorbent fiber by preirradiation-induced grafting of PDMAEMA and its Au(III) adsorption and reduction performance. J. Appl. Polym. Sci. 134, 44955 (2017). https://doi.org/10.1002/app.44955

    Article  Google Scholar 

  38. R. Li, H. Ma, Z. Xing et al., Synergistic effects of different co-monomers on the uranium adsorption performance of amidoximated polyethylene nonwoven fabric in natural seawater. J. Radioanal. Nucl. Chem. 315, 111–117 (2018). https://doi.org/10.1007/s10967-017-5639-6

    Article  Google Scholar 

  39. R. Li, L. Pang, H. Ma et al., Optimization of molar content of amidoxime and acrylic acid in UHMWPE fibers for improvement of seawater uranium adsorption capacity. J. Radioanal. Nucl. Chem. 311, 1771–1779 (2017). https://doi.org/10.1007/s10967-016-5117-6

    Article  Google Scholar 

  40. A.R. Horrocks, J. Zhang, M.E. Hall, Flammability of polyacrylonitrile and its copolymers II. Thermal behaviour and mechanism of degradation. Polym. Int. 33, 303–314 (1994). https://doi.org/10.1002/pi.1994.210330310

    Article  Google Scholar 

  41. C. Ling, X. Liu, X. Yang et al., Uranium adsorption tests of amidoxime-based ultrahigh molecular weight polyethylene fibers in simulated seawater and natural coastal marine seawater from different locations. Ind. Eng. Chem. Res. 56, 1103–1111 (2017). https://doi.org/10.1021/acs.iecr.6b04181

    Article  Google Scholar 

  42. T. Suzuki, K. Saito, T. Sugo et al., Fractional elution and determination of uranium and vanadium adsorbed on amidoxime fiber from seawater. Anal. Sci. 16, 429–432 (2000). https://doi.org/10.2116/analsci.16.429

    Article  Google Scholar 

  43. A. Zhang, G. Uchiyama, T. Asakura, pH Effect on the uranium adsorption from seawater by a macroporous fibrous polymeric material containing amidoxime chelating functional group. React. Funct. Polym. 63, 143–153 (2005). https://doi.org/10.1016/j.reactfunctpolym.2005.02.015

    Article  Google Scholar 

  44. N. Horzum, T. Shahwan, O. Parlak et al., Synthesis of amidoximated polyacrylonitrile fibers and its application for sorption of aqueous uranyl ions under continuous flow. Chem. Eng. J. 213, 41–49 (2012). https://doi.org/10.1016/j.cej.2012.09.114

    Article  Google Scholar 

  45. N.K. Sethy, R.M. Tripathi, V.N. Jha et al., Assessment of natural uranium in the ground water around jaduguda uranium mining complex. India J. Environ. Prot. Ecol. 2, 1002 (2011). https://doi.org/10.4236/jep.2011.27115

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Juan Ma or Xiao-Yan Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. U1732151 and 21676291) and Strategic Pilot and Technology Special Funds of the Chinese Academy of Science (No. XDA02030200).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ding, XJ., Ao, JX. et al. Preparation of amidoxime-based PE/PP fibers for extraction of uranium from aqueous solution. NUCL SCI TECH 30, 20 (2019). https://doi.org/10.1007/s41365-019-0543-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0543-0

Keywords

Navigation